
A	Platform	for	Online	Monitoring	
of	Autonomous	Cars

Houssam	Abbas
Postdoc,	University	of	Pennsylvania

Assistant	Professor,	Oregon	State	University	(Starting	2019)

Joint	work	with	Rahul	Mangharam,	Madhur Behl,	and	Matthew	O’Kelly

Monitoring	of	Cyber-Physical	Systems

3

Computation
(CS, formal

methods)

Physical
(Controls)

Comms
(Networking,
Inf. Theory)

Cyber-
Physical
Systems

Cyber-Physical	
Systems

4

Autonomous vehicles

5

Smart grid

6

Autonomous medical devices

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity	– so	what?

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity	– so	what?
• You	ran	a	generated	monitor	on	your	laptop	– so	what?

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity	– so	what?
• You	ran	a	generated	monitor	on	your	laptop	– so	what?
• You	fed	it	recorded	data	– so	what?

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity	– so	what?
• You	ran	a	generated	monitor	on	your	laptop	– so	what?
• You	fed	it	recorded	data	– so	what?

So	you’ve	developed	a	new	monitor	synthesis	
algo…

• You	know	the	theoretical	complexity	– so	what?
• You	ran	a	generated	monitor	on	your	laptop	– so	what?
• You	fed	it	recorded	data	– so	what?
• You’ve	demonstrated	the	code	in	a	custom	environment	in	your	
kitchen	– so	what?

Imagine	testing	your	algorithm	…

• You	know	the	theoretical	complexity	– so	what?
• While	measuring	real	runtime	numbers
• You	ran	a	generated	monitor	on	your	laptop	– so	what?
• On	the	target	hardware
• You	fed	it	recorded	data	– so	what?
• With	realistic	software	architecture	to	feed	it	data
• You’ve	demonstrated	the	code	in	a	custom	environment	in	your	
kitchen	– so	what?
• In	an	accepted	and	widely	used	environment

It	doesn’t	get	
better	than…

Running	on	the	real	robot

Real autonomous car!

PERCEIVE PLAN ACT

Big	Bad	World

PERCEIVE PLAN &
MONITOR ACT

Big	Bad	World

Autonomous	
Race	Car	and	
Simulator

The

f1tenth.org

Chassis Design Sensor Integration

Software System Architecture Cloud-Based Simulation Tool

GPU	accelerated
libraries

Vehicle	and	
environment	

models	in	GazeboROSbag dataScenario	Sim

Open Source

f1tenth.org

ResearchEducation Competition

So	you	can’t	build	the	car	just	yet…

PERCEIVE PLAN &
MONITOR ACT

Big	Bad	World

PERCEIVE PLAN &
MONITOR ACT

SIMULATOR
STEERING AND ACCELERATIONSENSOR DATA

PERCEIVE PLAN &
MONITOR ACT

SIMULATOR
STEERING AND ACCELERATIONSENSOR DATA

ACTUAL CODE THAT WILL BE DEPLOYED

PERCEIVE PLAN &
MONITOR ACT

SIMULATOR
STEERING AND ACCELERATIONSENSOR DATA

ACTUAL CODE THAT WILL BE DEPLOYED
RUNNING ON TARGET HARDWARE

PERCEIVE PLAN &
MONITOR ACT

SIMULATOR
STEERING AND ACCELERATIONSENSOR DATA

ACTUAL CODE THAT WILL BE DEPLOYED
RUNNING ON TARGET HARDWARE

WITHIN THE SAME SW ARCHITECTURE

Starting	September	2018,	you	will	
be	able	to	do	this:
(first,	get	a	computer	running	Ubuntu	16.04	– or	install	a	Virtual	Machine	running	
the	same)
(and	install	ROS	– super	easy,	instructions	at	ros.org,	and	they	work!)

$ cd ~/sandbox
$ git clone \
https://github.com/mlab-upenn/f110-upenn-course.git

$ mkdir -p sims_ws/src

$ cp -r f110-upenn-course/simulator/* sims_ws/src/

$ sudo apt-get install ros-kinetic-ackermann-msgs \
ros-kinetic-ros-control \

ros-kinetic-ros-controllers \

ros-kinetic-gazebo-ros-control \
ros-kinetic-joy

$ chmod +x sims_ws/src/simulator/wall_following/scripts/*.py

$ catkin_make

$ roslaunch wall_following wall_following.launch

Get code

Get some
packages

Compile

Run

Simulator	provides:
Synthetic	LiDAR		data
Synthetic	video
Simplistic	dynamics	(work	in	progress)

Choice	of	map

MIT Tunnels

Levine Hall, UPenn

Code driving car in
simulator is SAME code that
drives it in real world

That same code runs on the computer (TX1) that will be on-board the car

Imagine	testing	your	algorithm	…

• While	measuring	real	runtime	numbers	on	the	platform	hardware
• With	realistic	software	architecture
• Implemented	in	a	supported	language
• In	an	accepted	and	widely	used	environment

ROS: Robot Operating System

ROS	master	and	nodes

Node: a single process with a specific functionality

Communication	between	nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

scan [topic]

Message1
Message2

…

LaserScan [Message]

Mapping
Node

Subscriber	NodePublisher	Node

Communication	between	nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

scan [topic]

Message1
Message2

…

LaserScan [Message]
Mapping

Node

Subscriber	Nodes

Publisher	Node

Monitor
Node

Messages:	data	structures

scan	[topic]

Message1
Message2

…

LaserScan [Message]

Monitor
Node

Messages:	data	structures

Message1
Message2

…
Localization

Node

ROLL

YAW

PITCH

X

Z

Y
# Message	
sensor_msgs/imu
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance

geometry_msgs/Vector3 angular_velocity
float64[9] angular_velocity_covariance

geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

Perception

ControlPlanning

ROS Capabilities
urg_node

hokuyo_node

zed_camera

stereo_image_proc
ros_zed_cuda_driver

razor_imu_9dof
camera1394

move_base

hector_slam

vanishing_point
rosserial_python

PID_control

Imagine	testing	your	algorithm	…

• While	measuring	real	runtime	numbers	on	the	platform	hardware
• With	realistic	software	architecture
• In	an	accepted	and	widely	used	environment

Creating	a	new	monitor	manually

• Create	.cpp or	.py monitor	file
• Edit	two	configuration	files
• Compile
• Voilà!

Starting	September	2018,	you	will	
be	able	to	do	this:
(first,	get	a	computer	running	Ubuntu	16.04	– or	install	a	Virtual	Machine	running	
the	same)
(and	install	ROS	– super	easy,	instructions	at	ros.org,	and	they	work!)

$ cd ~/sandbox

$ cp -r \

f110-upenn-course/algorithms/runtime_monitoring/ \

sims_ws/src/

$ catkin_make

$ roslaunch wall_following wall_following.launch

#	in	a	new	terminal
$ source devel/setup.bash

$ rosrun runtime_monitoring moussa_sim_monitor

Get code

Compile

Run

Monitor	synthesis

• Work	in	progress,	with	Dogan Ulus,	on	monitor-synthesis-to-ROS
• Study	performance	of	synthesized	monitors	in	the	ROS	environment

$ cd ~/sandbox/sims_ws/

$ tl2cpp –with-headers “always[1,4] gt(x:float,4)” \

--outdir src/runtime_monitoring/include

Edit CMakeLists.txt and package.xml

$ catkin_make

$ roslaunch wall_following wall_following.launch

In a new terminal
$ source devel/setup.bash

$ rosrun runtime_monitoring ree_tl_1

Generate
code

Compile

Run

Perception

Control

Planning

ROS Capabilities

Perception

Control

Planning

ROS Capabilities

Monitoring

Plans

• What	you	saw	should	be	released	in	September

ResearchEducation Competition

Organizers
Pennsylvania
Virginia
Italy
Racers
Arizona
Pennsylvania
Korea
Sweden
Italy
Virginia
Czech Republic
Community
California
Denmark
Portugal
Texas
Japan
North Carolina
Tennessee
South Carolina
New York
Canada
Austria
Hong Kong

Organizers
Pennsylvania
Virginia
Italy
Racers
Arizona
Pennsylvania
Korea
Sweden
Italy
Virginia
Czech Republic
Community
California
Denmark
Portugal
Texas
Japan
North Carolina
Tennessee
South Carolina
New York
Canada
Austria
Hong Kong RV	GAMES?

