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So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?
* You ran a generated monitor on your laptop — so what?
* You fed it recorded data — so what?

* You've demonstrated the code in a custom environment in your
kitchen — so what?



Imagine testing your algorithm ...

* While measuring real runtime numbers
~Youran-a-generated-monitoronyourlaptop—so-what?
* On the target hardware
~Youfeditrecorded-data—so-what?

e With realistic software architecture to feed it data

* In an accepted and widely used environment



t doesn’t get
oetter than...

Running on the real robot

Real autonomous car!
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Open Source



Build Drive Race About Rules Forum Crew Sponsor |SignUp

Autonomous Racing Competition

Click here to sign up for the 2018 competition at CPS
Week! Otherwise subscribe to our mailing list below...

email address

‘i

fltenth.org
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Lecture 1.2 - Getting Started
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Overview:
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Practice Session 1:
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@ YouTube
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1/10th the scale. 10 times the fun!

Education Research Competition
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Starting September 2018, you will
be able to do this:

(first, get a computer running Ubuntu 16.04 — or install a Virtual Machine running
the same)

(and install ROS — super easy, instructions at ros.org, and they work!)



cd ~/sandbox
git clone \
https://github.com/mlab-upenn/fl10-upenn-course.git = @Get code

mkdir -p sims ws/src

—

cp —-r fll0-upenn-course/simulator/* sims ws/src/

sudo apt-get install ros-kinetic-ackermann-msgs \
ros—kinetic-ros-control \

— (Get some
packages

ros—-kinetic-ros-controllers \

ros—-kinetic-gazebo-ros-control \
ros—kinetic—-joy

—

chmod +x sims ws/src/simulator/wall following/scripts/*.py

catkin make

roslaunch wall following wall followiling.launch



Property

0.97 00 00:00:07.160 00 00:00:08.357 7160
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" Code driving car in
simulator is SAME code that
drives it in real world







Imagine testing your algorithm ...

* While measuring real runtime numbers on the platform hardware
* With realistic software architecture

* Implemented in a supported language

* In an accepted and widely used environment



ROS: Robot Operating System

[ X N J
o000 R O S About Why ROS? Getting Started Get Involved Blog
[ N N J

What is ROS?

The Robot Operating System (ROS) is a set of software libraries and tools that

help you build robot applications. From drivers to state-of-the-art algorithms,
and with powerful developer tools, ROS has what you need for your next
robotics project. And it's all open source.

<

::: ROS.org

Open Source Robotics Foundation



ROS master and nodes

Node: a single process with a specific functionality

4 )
ROS Master
* Enables nodes to locate one another
o Handles Parameter Server y

|

robot ‘
planning

camera image motion H robot
interface processing logic interface




Communication between nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

Mapping
Node

Subscriber Node

LaserScan (Message] scan [tOPiC]

—

Messagel
Message/

Publisher Node



Communication between nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

Mapping
LaserScan (Message] sCan [tOPIC] Node

Messagel
Message/

‘ Monitor
Node

Publisher Node

Subscriber Nodes



Messages: data structures

LaserScan [Message) N\essage]

Monitor
Node

Message.Z

std_msgs/Header header
/ \an Direction float32 angle_min

float32 angle_max
float32 angle_increment
Angulaf Range float32 time_increment

5 float32 scan_time
float32 range_min
float32 range_max

float32[] ranges
float32[] intensities




Messages: data structures

Messagel

Localization

Message.Z

Node

H# Message

sensor_msgs/imu
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance

geometry _msgs/Vector3 angular_velocity
float64[9] angular_velocity covariance

geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance




ROS Capabilities

urg—_node
hokuyo_node

zed_camera

ros—_zed_cuda_driver
stereo_image_proc

razor_imu_9dof cameral394

Perception

hector_slam

Control

move_base

Planning

PID_control

/

rosserial_python

vanishing_—point



Imagine testing your algorithm ...

* While measuring real runtime numbers on the platform hardware
* With realistic software architecture
* In an accepted and widely used environment



Creating a new monitor manually

* Create .cpp or .py monitor file
* Edit two configuration files

* Compile

* Voila!



Starting September 2018, you will
be able to do this:

(first, get a computer running Ubuntu 16.04 — or install a Virtual Machine running
the same)

(and install ROS — super easy, instructions at ros.org, and they work!)



cd ~/sandbox

cp —-r \
. . D — (et code
fll0-upenn-course/algorithms/runtime monitoring/ \
sims ws/src/
catkin make } Compile
roslaunch wall following wall followiling.launch
#in a new terminal __ Run

source devel/setup.bash

rosrun runtime monitoring moussa Sim monitor



Monitor synthesis

* Work in progress, with Dogan Ulus, on monitor-synthesis-to-ROS
* Study performance of synthesized monitors in the ROS environment



cd ~/sandbox/sims ws/

t12cpp —-with-headers “always[1l,4] gt(x:float,4)” \

-—outdir src/runtime monitoring/include — Generate

code
# Edit CMakelists.txt and package.xml
catkin make _
- Compile
roslaunch wall following wall followiling.launch B
# In a new terminal
source devel/setup.bash — Run
rosrun runtime monitoring ree tl 1




S Capabilities

Perception

Planning

Control



S Capabilities

Perception

Planning




Plans

* What you saw should be released in September



1/10th the scale. 10 times the fun!

Education Research Competition
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