f ‘ R Oregon State

Penn 7 University

Engineering

A Platform for Online Monitoring
of Autonomous Cars

Houssam Abbas

Postdoc, University of Pennsylvania

Assistant Professor, Oregon State University (Starting 2019)

Joint work with Rahul Mangharam, Madhur Behl, and Matthew O’Kelly

Monitoring of Cyber-Physical Systems

Cyber-Physical
Systems
Physical Computation
(Controls) (CS, formal
methods)
Cyber-
Physical
Systems

Comms
(Networking,
Inf. Theory)

Autonomous vehicles

Hierarchical Planner

Mission Planner
Sensors &
_> .
Perception Behavioral Planner
Local Planner

Smart grid

-

\

T

Autonomous medical devices

Voltage (mV)
-75 -850 -25 0 25
o J |

UCLA CARDIAC MODELING GROUP

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?
* You ran a generated monitor on your laptop — so what?

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?
* You ran a generated monitor on your laptop — so what?
* You fed it recorded data — so what?

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?
* You ran a generated monitor on your laptop — so what?
* You fed it recorded data — so what?

So you’ve developed a new monitor synthesis
algo...

* You know the theoretical complexity — so what?
* You ran a generated monitor on your laptop — so what?
* You fed it recorded data — so what?

* You've demonstrated the code in a custom environment in your
kitchen — so what?

Imagine testing your algorithm ...

* While measuring real runtime numbers
~Youran-a-generated-monitoronyourlaptop—so-what?
* On the target hardware
~Youfeditrecorded-data—so-what?

e With realistic software architecture to feed it data

* In an accepted and widely used environment

t doesn’t get
oetter than...

Running on the real robot

Real autonomous car!

PERCEIVE

Big Bad World

: 1() 00.00 MPH

—

©

o>

T

CTE: +0.19m

PERCEIVE

MONITOR

Big Bad World

= 00.00 MPH

CTE: +0.19m

The FL/O

Autonomous
Race Car and
Simulator

N\

fltenth.org

v/';

0o °

,,I(le|e
o

-} n,“

L
1x x
3 0 0
el o —
1 — 1‘ __l DD
B VA .
Sx 1x x

Chassis Design

ﬁ?oftware System Architecture J

:::ROS

_

. Steering
Filtkers — T
LiDAR
‘ L Localization
i
X |——»] '-uouon
Camera generation L] Path Motor
. planning Controller
MU omputer | | |
vision
_ﬁmmw Drive
Planning Control

GPU accelerated
libraries

LiDAR

[fo =0 \
$SIRHUHHE
- HM

Camera IMU IR Depth Cameras

Motor
Controller

Onboard Computer

Sensor Integration

Simulation Tool

Vehicle and
environment

ROSbagdata | qels in Gazebo

F1/10 Race Car Assembly
[Time Lapse]

Open Source

Build Drive Race About Rules Forum Crew Sponsor |SignUp

Autonomous Racing Competition

Click here to sign up for the 2018 competition at CPS
Week! Otherwise subscribe to our mailing list below...

email address

‘i

fltenth.org

F/ BUILD / DRIVE / RACE About Rules Forum Crew Sponsor |SignUp
. " Arizona State [p ETH
LeCture 1 '1 - Course OverVIeW % University THF L[\]]\FR\[T} "f Eidgendssische Technische Hochschule Ziirich

_ _ N EW M EX IC() Swiss Federal Institute of Technology Zurich
- T TEXAS o,
SAA0g FP ST Autonomous Racing SJS U FKTHY

o

VETENSKAP
38 OCH KONST 95

AR5 The University of Texas at Austin

o

ROYAL INSTITUTE
OF TECHNOLOGY

RIVERSIDE UCLA
UCONN

Dr.Madhur Behl UNIVERSITY OF CONNECTICUT
University of Pennsylvania
& Penn

Engineering
@3 YouTube —

View on YouTube Download PDF {

Lecture 1.2 - Getting Started

ytorace+— Not quite.. : Car assembly &

Overview:
Perception
Planning
Control

Robot Operating System

Practice Session 1:
Driving using Keyboard controls

@ YouTube

View on YouTube Download PDF

Travvac 1/1N erale R raro Far

1/10th the scale. 10 times the fun!

Education Research Competition

PERCEIVE

MONITOR

Big Bad World

= 00.00 MPH

CTE: +0.19m

PLAN &
PERCEIVE MONITOR

SIMULATOR

SENSOR DATA STEERING AND ACCELERATION

- PLAN & ;
PERCEIVE MONITOR 5
ACTUAL CODE THAT WILL BE DEPLOYED

SIMULATOR
SENSOR DATA

STEERING AND ACCELERATION

“IIIIIIIIIIIIII-.

*

¢S EEEE NN EEEEEEEEEEEEEEEEEEEEER E I EEEEEEER IIIIIIIIIIIIIIIIIIIIIIIIII..

L
L 2

“IIlllll’lllllllllllll..
s sEssEEEnnnnnnnn?®

PERCEIVE ACT
- ¢ MON TOR o .
ACTUAL CODE THAT WILL BE DEPLOYED

RUNNING ON TARGET HARDWARE 3

.II‘

SIMULATOR

SENSOR DATA

STEERING AND ACCELERATION

g SN NN NN NN EEEEEEEENER,

EEssssEEEmmnn?®

“IIIIIIIIIIIIIIIIIIIIIIIIIIII EEEEEEEEEEEEEEEEDR | | EEEEEEEE NN SN EEEEEEEEEEEEEEENENEEEEEEEENNy

L 4

L 4

“-IIIIII‘IIIIIIIIIIIII..

.

PERCEIVE ACT
- ¢ MON TOR 0: :
ACTUAL CODE THAT WILL BE DEPLOYED

RUNNING ON TARGET HARDWARE .

. WITHIN THE SAME SW ARCHITECTURE ’.I'.

SIMULATOR
SENSOR DATA

STEERING AND ACCELERATION

Starting September 2018, you will
be able to do this:

(first, get a computer running Ubuntu 16.04 — or install a Virtual Machine running
the same)

(and install ROS — super easy, instructions at ros.org, and they work!)

cd ~/sandbox
git clone \
https://github.com/mlab-upenn/fl10-upenn-course.git = @Get code

mkdir -p sims ws/src

—

cp —-r fll0-upenn-course/simulator/* sims ws/src/

sudo apt-get install ros-kinetic-ackermann-msgs \
ros—kinetic-ros-control \

— (Get some
packages

ros—-kinetic-ros-controllers \

ros—-kinetic-gazebo-ros-control \
ros—kinetic—-joy

—

chmod +x sims ws/src/simulator/wall following/scripts/*.py

catkin make

roslaunch wall following wall followiling.launch

Property

0.97 00 00:00:07.160 00 00:00:08.357 7160

Choice of map

MIT Tunnels

“POE -~ 008 |=%Z | RE|RO|E,

 LlevineHall,UPenn

Wl] IE AL LY

" Code driving car in
simulator is SAME code that
drives it in real world

Imagine testing your algorithm ...

* While measuring real runtime numbers on the platform hardware
* With realistic software architecture

* Implemented in a supported language

* In an accepted and widely used environment

ROS: Robot Operating System

[X N J
o000 R O S About Why ROS? Getting Started Get Involved Blog
[N N J

What is ROS?

The Robot Operating System (ROS) is a set of software libraries and tools that

help you build robot applications. From drivers to state-of-the-art algorithms,
and with powerful developer tools, ROS has what you need for your next
robotics project. And it's all open source.

<

::: ROS.org

Open Source Robotics Foundation

ROS master and nodes

Node: a single process with a specific functionality

4)
ROS Master
* Enables nodes to locate one another
o Handles Parameter Server y

|

robot ‘
planning

camera image motion H robot
interface processing logic interface

Communication between nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

Mapping
Node

Subscriber Node

LaserScan (Message] scan [tOPiC]

—

Messagel
Message/

Publisher Node

Communication between nodes

Nodes communicate messages via topics
in an asynchronous publish-subscribe model

Mapping
LaserScan (Message] sCan [tOPIC] Node

Messagel
Message/

‘ Monitor
Node

Publisher Node

Subscriber Nodes

Messages: data structures

LaserScan [Message) N\essage]

Monitor
Node

Message.Z

std_msgs/Header header
/ \an Direction float32 angle_min

float32 angle_max
float32 angle_increment
Angulaf Range float32 time_increment

5 float32 scan_time
float32 range_min
float32 range_max

float32[] ranges
float32[] intensities

Messages: data structures

Messagel

Localization

Message.Z

Node

H# Message

sensor_msgs/imu
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance

geometry _msgs/Vector3 angular_velocity
float64[9] angular_velocity covariance

geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

ROS Capabilities

urg—_node
hokuyo_node

zed_camera

ros—_zed_cuda_driver
stereo_image_proc

razor_imu_9dof cameral394

Perception

hector_slam

Control

move_base

Planning

PID_control

/

rosserial_python

vanishing_—point

Imagine testing your algorithm ...

* While measuring real runtime numbers on the platform hardware
* With realistic software architecture
* In an accepted and widely used environment

Creating a new monitor manually

* Create .cpp or .py monitor file
* Edit two configuration files

* Compile

* Voila!

Starting September 2018, you will
be able to do this:

(first, get a computer running Ubuntu 16.04 — or install a Virtual Machine running
the same)

(and install ROS — super easy, instructions at ros.org, and they work!)

cd ~/sandbox

cp —-r \
. . D — (et code
fll0-upenn-course/algorithms/runtime monitoring/ \
sims ws/src/
catkin make } Compile
roslaunch wall following wall followiling.launch
#in a new terminal __ Run

source devel/setup.bash

rosrun runtime monitoring moussa Sim monitor

Monitor synthesis

* Work in progress, with Dogan Ulus, on monitor-synthesis-to-ROS
* Study performance of synthesized monitors in the ROS environment

cd ~/sandbox/sims ws/

t12cpp —-with-headers “always[1l,4] gt(x:float,4)” \

-—outdir src/runtime monitoring/include — Generate

code
Edit CMakelists.txt and package.xml
catkin make _
- Compile
roslaunch wall following wall followiling.launch B
In a new terminal
source devel/setup.bash — Run
rosrun runtime monitoring ree tl 1

S Capabilities

Perception

Planning

Control

S Capabilities

Perception

Planning

Plans

* What you saw should be released in September

1/10th the scale. 10 times the fun!

Education Research Competition

a . &f . \) . -;\ \ \\ -

Organizers
Pennsylvania

Virginia

ltaly

Racers
Arizona
Pennsylvania
Korea
Sweden

ltaly

Virginia

Czech Republic
Community
California
Denmark
Portugal
Texas

Japan

North Carolina
Tennessee
South Carolina
New York
Canada
Austria

Hong Kong

Organizers
Pennsylvania

Virginia

ltaly

Racers
Arizona
Pennsylvania
Korea
Sweden

ltaly

Virginia

Czech Republic
Community
California
Denmark
Portugal
Texas

Japan

North Carolina
Tennessee
South Carolina
New York
Canada
Austria

Hong Kong

