First-Order Temporal Properties of Continuous Signals

Thomas Ferrère, IST Austria 13 July 2018

Joint work with Alexey Bakhirkin, Tom Henzinger, and Dejan Nickovic

A Brief History: Runtime Verification for Rigorous Systems Engineering

- LTL Monitoring (Kim & al. 1999, Havelund & Rosu 2001)
- Signal Temporal Logic (Maler & Nickovic 2004)
- LTL Robust Monitoring (Fainekos & Pappas 2006)
- STL Robust Monitoring (Fainekos & Pappas 2009, Donzé & Maler 2010)
- STL Parametric Identification (Asarin & al. 2011)
- Robustness-Based Falsification (Sankaranarayanan & Fainekos 2012)

Research Objective: Making RV 4 RISE Practical

- Efficient Robust Monitoring (Donzé & F & Maler 2013)
- Timed Pattern Matching (Ulus & al. 2014)
- Trace Diagnostics (F & Maler & Nickovic 2015)
- Pattern-Based Measurements and Robustness (F & al. 2015, Bakhirkin & al. 2017)
- Efficient Parametric Identification (Bakhirkin & F & Maler 2018)

Parametric STL

- PSTL Syntax $\varphi ::= f \sim c \mid \varphi_1 \lor \varphi_2 \mid F_{[a,b]} \varphi \mid \varphi_1 U \varphi_2$
- PSTL Semantics

$$(w, v, t) \vDash \varphi$$

where

- -w is trace
- -v is valuation of parameters
- -t is absolute time

Example

• PSTL Property:

$$G_{[0,50]} |f - x| \le 1.0$$

- Meaning: signal *f* stays within 1.0 of value *x* for 50 time units
- Output of Parametric Identification: set of valuations of x that make the formula true on a given trace

Efficient Parametric Identification

- Compute the set of valuations $(v, t) \in \mathbb{R}^{k+1}$ such that $(w, v, t) \models \varphi$ as convex polyhedra
- Example:

Quantified Signal Temporal Logic

- Instead of measuring parameter x, just state $\exists x : G_{[0,5]} | f - x | \le 1.0$
- Meaning: there exists x such that f stabilizes within 1.0 of x for 5 time units
- Quantifiers can be nested with temporal operators
- Example: control $\exists x : G_{[0,10]} | f - x | \le 1.0$ $\rightarrow \exists y : |x - y| \le 2.0 \land G_{[5,10]} | g - y | \le 1.0$

QSTL Definitions

• Syntax:

$$\varphi ::= f \sim \mathbf{c} \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid F_{[\mathbf{a},\mathbf{b}]} \varphi$$
$$\mid \varphi_1 U \varphi_2 \mid \exists x : \varphi$$

- Here *a*, *b*, *c*, are constants or parameters
- Semantics:

 $(w, v, t) \vDash \exists x : \varphi \text{ iff } (w, v[x \leftarrow u], t) \vDash \varphi$

Other cases are as usual

Efficient (?) QSTL Monitoring

• Use same algorithm as for PSTL

- Remark:
 - piecewise-constant signals -> box polyhedra
 - Piecewise linear signals -> arbitrary polyhedra

Time Variables vs Temporal Operators

- Remark that $F_{[d,d]}\varphi$ holds at t iff φ holds at t+d
- Thus operator "until" becomes redundant: $\varphi U \psi$

 $\exists d > 0: F_{[d,d]}\psi \wedge \forall c \in (0,d): F_{[c,c]}\varphi$

 \Leftrightarrow

- In fact, $F_{[d,d]}$ is the only operator we need
- But then, why use temporal logic?

The First-Order Logic of Signals

- Variables *x*, *y*, ...
- Function symbols *f*, *g*, ...
- SFO Syntax:

$$\begin{array}{l} \theta ::= n \mid x \mid f(\theta) \mid \theta_1 - \theta_2 \mid \theta_1 + \theta_2 \\ \varphi ::= \theta_1 < \theta_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x : \varphi \end{array}$$

 SFO Semantics: linear arithmetic over piecewise linear signal interpretations of function symbols

Examples of SFO Formulas

Example 3 (Rise Time). *Consider the following property:*

$$\varphi_{3} \equiv \forall c : \begin{pmatrix} f(t) = 1 \land f(t+c) = 2 \\ \land \forall t' \in (t,t+c) : 1 < f(t') < 2 \end{pmatrix}$$
$$\rightarrow \exists t' \exists d : \begin{pmatrix} t < t' \land 9c \leq 10d \leq 11c \\ \land \forall t'' \in (t,t') : g(t'') < 1 \\ \land g(t') = 1 \land g(t'+d) = 2 \\ \land \forall t'' \in (t',t'+d) : 1 < g(t'') < 2 \end{pmatrix}$$

Formula φ_3 expresses the fact that if signal f has a positive edge (from 1.0 to 2.0) then signal g subsequently has a positive edge whose rise time is within 10% of that of f.

Basic Properties of SFO

- Satisfiability is undecidable
 - Over piecewise-linear signals
 - Over a bonded time domain
 - Restricted to linear order, or difference logic over Boolean signals
- Membership (of PWL signal in language of SFO formula) is decidable

Remark: membership of Signal Second-Order logic is undecidable

Complexity of Membership for PWL Signals

- Decidable in time $(m+n)^{2^{O(k+l)}}$
 - -m = size of formula
 - -n = size of trace
 - -k = number of quantifiers
 - -l = number of function symbols
- Proof:
 - translate signal into linear real arithmetic formula
 - conjunct with SFO formula
 - Eliminate quantifiers

May not scale with large signals

Bounded-Time Formulas

- Separate variables between
 - absolute time variable t
 - delays variables $d \in D$
 - space variables $r \in R$
- Syntax

$$\begin{split} \delta &::= d \mid n \mid \delta_1 - \delta_2 \mid \delta_1 + \delta_2 \\ \rho &::= r \mid f(t + \delta) \mid n \mid \rho_1 - \rho_2 \mid \rho_1 + \rho_2 \\ \varphi &::= \delta_1 < \delta_2 \mid \rho_1 < \rho_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \\ \exists \ d \in I : \varphi \mid \exists r : \varphi \end{split}$$

Monitoring

- Problem: compute the Boolean satisfaction signal of some formula φ relative to a piecewise-linear signal w
- Solution:
 - Inductively on the formula structure
 - Represent satisfaction set as list of polytopes
 - Order polytopes in time

Efficient when in every slice of time the satisfaction set has few non-convex parts

Algorithms

function $formula(\varphi, P_{diff})$ if $\varphi = \rho < \rho_2$ then $\mathcal{P}, v \leftarrow term(\rho_1 - \rho_2, P_{diff})$ **return** $eliminate(v, \mathcal{P} \sqcap (v < 0))$ else if $\varphi = \neg \varphi'$ then $\mathcal{P} \leftarrow formula(\varphi', P_{diff})$ **return** $P_{\text{diff}} \sqcap complement(\mathcal{P})$ else if $\varphi = \varphi_1 \vee \varphi_2$ then $\mathcal{P}_1 \leftarrow formula(\varphi_1, P_{diff})$ $\mathcal{P}_2 \leftarrow formula(\varphi_2, P_{diff})$ return $\mathcal{P}_1 \sqcup \mathcal{P}_2$ else if $\varphi = \exists x. \varphi'$ then $\mathcal{P} \leftarrow formula(\varphi', P_{diff})$ return $eliminate(x, \mathcal{P})$ else if $\varphi = \exists d \in I. \varphi'$ then $\mathcal{P} \leftarrow formula(\varphi', P_{diff} \sqcap (d \in I))$ **return** $eliminate(d, \mathcal{P})$ end end

Complementation

- Idea: proceed in time-ordered manner
- Complement each polytope over its time footprint

Complexity on Bounded-Time SFO

- Decidable in time $n2^{(m+h)^{2^{O(k+l)}}}$
 - -n = size of trace
 - -m = size of formula
 - -k = number of quantifiers
 - -l = number of function symbols
 - -h = variability

DDR2 Case Study

- Memory interface
- Requirement: alignment between data signal DS and data signal strobe DQS
- Involves setup times tDS and tDH
- Alignment defined according to crossing of thresholds:

Threshold name	Threshold id	Value (V)
V_{DDQ}	V_1	1.800
V _{IH(AC)min}	V_2	1.250
$V_{IH(DC)_{min}}$	V_3	1.025
$V_{REF(DC)}$	V_4	0.900
$V_{IL(DC)_{max}}$	V_5	0.775
V _{IL(AC)max}	V_6	0.650

- Falling edge of DQS = crossing V3 from above
- Falling edge of DS = crossing V6 from above

Alignment Property

Whenever DQS is on its falling edge, the distance from the previous falling edge in DS is at least tDS time

Formalization

• In STL:

 $\psi(t) \equiv \downarrow(DQS, V_3)(t) \to \Box_{[0, tDS]} \neg \downarrow(DS, V_6)(t)$

• Problem: tDS is **not constant**

 $\Delta tDS = tDS - tDS(base)$

• Should be linearly interpolated according to:

		DQS slew rate (V/ns)				
		2	1.5	1	0.9	0.8
DS slew rate (V/ns)	2	188	146	63	_	_
	1.5	167	125	42	43	_
	1	125	83	0	-2	-13
	0.9	_	69	-14	-13	-27
	0.8	—	—	-31	-30	-44

Formalization

• In SFO:

$$\psi'(t) \equiv \downarrow (DQS, V_3)(t) \to \exists \Delta TF_{DQS}, \Delta TF_{DS} :$$

$$\bigcirc_{\Delta TF_{DS}}^{V_6, V_4} (DS)(t) \land \bigcirc_{\Delta TF_{DQS}}^{V_6, V_4} (DQS)(t) \land$$

$$tDS = \delta(\Delta TF_{DQS}, \Delta TF_{DS}) \land \boxdot_{[0, tDS]} \neg \downarrow (DS, V_6)(t)$$

where

$$\Im_T^{c,c'}(s)(t) \equiv \exists t', t'' : t'' < t' < t \land \forall \tau \in (t',t) :$$

$$s(\tau) < c \land s(t') = c \land \forall \tau \in (t'',t') :$$

$$s(\tau) \in (c,c') \land s(t'') = c' \land t' - t'' = T$$

 $dqs_fall \equiv \downarrow (DQS \ge V_3)$ $dq_fall \equiv \downarrow (DS \ge V_6)$

Conclusion

- A powerful formalism for specifying properties of real-valued signals: First-Order Logic with Linear Arithmetic and uninterpreted unary funtion symbols.
 - Undecidable satisfiability problem
 - Decidable (doubly exponential) membership problem
 - Bounded-time fragment can be monitored in linear time relative to trace length
 - Captures complex requirements of analog circuits not monitored in practice

Conclusion

- Prototype C++ implementation using PPLite, a new open-source software library reimplementing functionality of the Parma Polyhedra Library
- Preliminary experiments: can monitor signals up to 1000 samples in a few seconds
- Open questions:
 - Scalability on real examples
 - Theoretical and practical expressiveness relative to temporal logic (and regular expression) variants