
Hardware-based runtime
verification with Tessla

Martin	Leucker
University	of	Lübeck

Joint	work	with	Normann	Decker,	Cesar	Sanchez,	Torben	Scheffel,	Malte	
Schmitz,	Daniel	Thoma	et	al.

Runtime	Verification

• Monitor	analyzes	the	
execution	of	the	system
• Synthesized	from	high-
level	specification	
• Has	to	see the	
execution
• Used	for	finding	bugs

M

Aging	Bugs	– Mandelbugs – Heisenbugs

3

• Some	bugs	only	occur	
• after	a	long	execution	time
• under	“weird”	circumstances

See what’s	going	on?
• Program	annotation?
• Program	annotation	changes	timing

Change	of	the	underlying	system

• Run	what	you	test	and	test	what	you	run

Code	annotation	– Program	cooperates
Original	source code Instrumented source code

void foo()
{
bool found=false;
for (int i=0; (i<100) && (!found); ++i)

{
if (i==50) break;

if (i==20) found=true;

if (i==30) found=true;

}
printf("foo\n");

}

char inst[15];
void foo()
{

bool found=false;
for (int i=0;((i<100)?inst[0]=1:inst[1]=1,0) &&
((!found)?inst[2]=1:inst[3]=1,0); ++i)

{
if ((i==50?inst[4]=1:inst[5]=1,0))
{ inst[6]=1; break;
}
if ((i==20?inst[7]=1:inst[8]=1,0))
{ inst[9]=1; found=true;
}
if ((i==30?inst[10]=1:inst[11]=1,0))
{ inst[12]=1; found=true;
}
inst[13]=1;

}
printf("foo\n");
inst[14]=1;

}

- Slowdown	typically	not	acceptable	for	production	code
- Unless	done	in	a	clever	way?	Printf??
- Here:	Use	additional	hardware	resources	instead

Hardware-based	Runtime	
Verification

SoC approach	– Archticture

2 In tegra t ing TeSSLa in to a SoC

2.1 Hardware-based Observability
The demand for non-intrusive observability justifies, per se,
the interest in hardware-based methods, powered by: the
usage of reconfigurable logic, supported on FPGA special-
purpose observers [6, 7, 8]; the row availability of integrated
observation resources [9, 10]. By nature, hardware-based
system observation is completely non-intrusive and can be
made, by design, extremely effective.

Processing
Element

Memory
Controller I/O Interface

Timer Unit

Memory

SoC Bus

Input/Outpt

I/O Interface

Observer
Entity

Interrupt
Controller

Figure 1: Generic SoC architecture and Observer Entity.

The architecture described in Figure 1 describes the functional
system platform, implemented as a SoC architecture and how
runtime observation and monitoring features can be integrated
non-intrusively, meaning execution of runtime verification
actions does not disturb the execution of the functional system
software components. Probing the processor-cache interfaces
should allow an higher accuracy in the observation of software
components execution.

2.2 Observer Entity
The Observer Entity defined by the architecture of Figure 2
aims to support the non-intrusive observation and runtime
verification of an associated functional system, therefore en-
abling the verification in runtime that its properties are being
fulfilled and that no design assumption is being violated.

Figure 2: Observer Entity architecture.

The Observer Entity is plugged to the platform where the
functional system software components execute, and com-
prises the hardware modules of Figure 2: Bus Interfaces,
capturing all physical bus activity, such as bus transfers or
interrupt vectors; Management Interface, enabling observer
entity configuration; Configuration, storing the dynamically
set of events; the System Observer itself, detecting events

of interest; Monitor, which detects possible violations to the
specified system behaviour; Time Base, which allows to time
stamp the events of interest.

2.3 System Observing Mechanisms

The System Observer collects, in runtime, from the functional
system bus interfaces, all the addressing/data information to
detect events of interest set by configuration, performed stati-
cally (offline) or dynamically, while the system is executing.

When an event of interest (e.g., the fetch of a specific instruc-
tion or a read/write access to a given variable in the memory)
is detected, it is timestamped with the instant of occurrence,
as obtained from the Time Base module, and supplied to ev-
ery downstream block awaiting for that event. An unique
identifier (obsID) is assigned to each observed event, being
an event composed by the tuple:

evt

obsID

= <a

obs

, v

obs

, t

obs

>

where: a
obs

is the address observed from the functional sys-
tem bus interface that matches a given event specification;
v

obs

, the corresponding observed value (e.g., instruction cod-
ing or data value); t

obs

, is the attached timestamp.

2.4 Monitoring Mechanisms

A divide and conquer strategy is used in the definition and
design of a minimal set of hardware-based essential blocks
for the synthesis of runtime verification mechanisms. A set of
basic monitors, encompassing essential runtime verification
actions, in both value and time domains, is detailed in [11].
These monitors can be instantiated as required. Additional
blocks (selectors, transformers and past-time event registers)
complement and enlarge the functionality provided by the ba-
sic monitors. The right combination of these building blocks
should be able to provide the necessary and sufficient mecha-
nisms for the runtime verification of any functional system.

3 An introduction to TeSSLa
TeSSLa [5] is a temporal stream-based specification lan-
guage which is designed for monitoring real-time signals
and has already been used to build monitors for Runtime
Verification [12]. TeSSLa reasons over asynchronous input
streams and provides a rich data domain (Booleans, integers,
reals). Monitors specified in TeSSLa can observe events, that
were emitted with different speeds and with different delays.
TeSSLa supports signals and event streams. An event stream
is only allowed to be defined for a finite number timestamps
in a finite interval, while a signal stream defines a value for
every point in time.

The basic concept of TeSSLa is deriving internal or output
streams by applying functions to already existing streams.
A stream can be defined declaratively as can be seen in the
following example of a TeSSLa specification:

def maximum := max(x1, x2)
def max(a,b) := if a > b then a else b

Volume xx, Number y, May 2018 Ada User Jour na l

Non-intrusive Runtime Verification within a System-on-Chip, RUME 2018
José Rufino, António Casimiro ,	Felix Dino Lange, Martin Leucker, Torben Scheffel, Malte Schmitz, Daniel Thoma

A2> "@@#2"137< B()&#/C+,-,D

2 In tegra t ing TeSSLa in to a SoC

2.1 Hardware-based Observability
The demand for non-intrusive observability justifies, per se,
the interest in hardware-based methods, powered by: the
usage of reconfigurable logic, supported on FPGA special-
purpose observers [6, 7, 8]; the row availability of integrated
observation resources [9, 10]. By nature, hardware-based
system observation is completely non-intrusive and can be
made, by design, extremely effective.

Figure 1: Generic SoC architecture and Observer Entity.

The architecture described in Figure 1 describes the functional
system platform, implemented as a SoC architecture and how
runtime observation and monitoring features can be integrated
non-intrusively, meaning execution of runtime verification
actions does not disturb the execution of the functional system
software components. Probing the processor-cache interfaces
should allow an higher accuracy in the observation of software
components execution.

2.2 Observer Entity
The Observer Entity defined by the architecture of Figure 2
aims to support the non-intrusive observation and runtime
verification of an associated functional system, therefore en-
abling the verification in runtime that its properties are being
fulfilled and that no design assumption is being violated.

!"#$%"&

'()%*+,-.)*&/*&

0"#1$23&4%$"#
!4#42*+*#%
5#%*&146*

73),5#%*&146*)

8$+*,74)*

'(
)%
*+

,7
3)

'()%*+,09"6:

Figure 2: Observer Entity architecture.

The Observer Entity is plugged to the platform where the
functional system software components execute, and com-
prises the hardware modules of Figure 2: Bus Interfaces,
capturing all physical bus activity, such as bus transfers or
interrupt vectors; Management Interface, enabling observer
entity configuration; Configuration, storing the dynamically
set of events; the System Observer itself, detecting events

of interest; Monitor, which detects possible violations to the
specified system behaviour; Time Base, which allows to time
stamp the events of interest.

2.3 System Observing Mechanisms

The System Observer collects, in runtime, from the functional
system bus interfaces, all the addressing/data information to
detect events of interest set by configuration, performed stati-
cally (offline) or dynamically, while the system is executing.

When an event of interest (e.g., the fetch of a specific instruc-
tion or a read/write access to a given variable in the memory)
is detected, it is timestamped with the instant of occurrence,
as obtained from the Time Base module, and supplied to ev-
ery downstream block awaiting for that event. An unique
identifier (obsID) is assigned to each observed event, being
an event composed by the tuple:

evt

obsID

= <a

obs

, v

obs

, t

obs

>

where: a
obs

is the address observed from the functional sys-
tem bus interface that matches a given event specification;
v

obs

, the corresponding observed value (e.g., instruction cod-
ing or data value); t

obs

, is the attached timestamp.

2.4 Monitoring Mechanisms

A divide and conquer strategy is used in the definition and
design of a minimal set of hardware-based essential blocks
for the synthesis of runtime verification mechanisms. A set of
basic monitors, encompassing essential runtime verification
actions, in both value and time domains, is detailed in [11].
These monitors can be instantiated as required. Additional
blocks (selectors, transformers and past-time event registers)
complement and enlarge the functionality provided by the ba-
sic monitors. The right combination of these building blocks
should be able to provide the necessary and sufficient mecha-
nisms for the runtime verification of any functional system.

3 An introduction to TeSSLa
TeSSLa [5] is a temporal stream-based specification lan-
guage which is designed for monitoring real-time signals
and has already been used to build monitors for Runtime
Verification [12]. TeSSLa reasons over asynchronous input
streams and provides a rich data domain (Booleans, integers,
reals). Monitors specified in TeSSLa can observe events, that
were emitted with different speeds and with different delays.
TeSSLa supports signals and event streams. An event stream
is only allowed to be defined for a finite number timestamps
in a finite interval, while a signal stream defines a value for
every point in time.

The basic concept of TeSSLa is deriving internal or output
streams by applying functions to already existing streams.
A stream can be defined declaratively as can be seen in the
following example of a TeSSLa specification:

def maximum := max(x1, x2)
def max(a,b) := if a > b then a else b

Volume xx, Number y, May 2018 Ada User Jour na l

SoC approach	with	TeSSLa specifications
4 In tegra t ing TeSSLa in to a SoC

C compiler

analyser

TeSSLa compiler

Leon
processor

system
observer

monitor

synthesizer

hardware platform (FPGA)

C code binary

TeSSLa
specification

debug symbols

dependency graph

monitor in
Verilog

data
events report

observation points

Figure 3: An overview over our approach.

description languages. It can be shown that TeSSLa speci-
fications are directly translatable into hardware description
language like Verilog.

Hardware-based observation is especially useful in domains
with long observation times. Therefore we introduce the
use case of task runtime observation of a satellite navigation
system to show a possible application with this approach.

This paper is the first step towards integrating TeSSLa into
a SoC. The use case prototype, showing the feasibility of
hardware-based observation within a SoC, needs further work,
namely with regard to: the exploitation of the monitoring
infrastructure [11]; the translation from TeSSLa to a hardware
description language; the definition of an effective algorithm
for the direct translation from the TeSSLa specification.

References
[1] M. Leucker and C. Schallhart, “A brief account of run-

time verification,” The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303, May-Jun 2009.

[2] Y. Falcone, K. Havelund, and G. Reger, Engineering
Dependable Software Systems, vol. 34, ch. A Tutorial
on Runtime Verification, pp. 141–175. Marktoberdorf,
Germany: IOS Press Ebooks, 2013.

[3] IEEE, 1076.1-2017 - IEEE Standard VHDL Analog and
Mixed-Signal Extensions, Jan. 2018.

[4] IEEE, 1800-2017 - IEEE Standard for SystemVerilog–
Unified Hardware Design, Specification, and Verifica-
tion Language, Feb. 2018.

[5] L. Convent, S. Hungerecker, M. Leucker, T. Schef-
fel, M. Schmitz, and D. Thoma, “TeSSLa: a temporal
stream-based specification language,” in International
Colloquium on Theoretical Aspects of Computing (IC-
TAC), 2018. Submitted for publication.

[6] C. Watterson and D. Heffernan, “Runtime verification
and monitoring of embedded systems,” Software, IET,
vol. 1, Oct. 2007.

[7] J. C. Lee, A. S. Gardner, and R. Lysecky, “Hardware
observability framework for minimally intrusive online
monitoring of embedded systems,” in Proc. 18th Int.
Conf. on Engineering of Computer Based Systems, (Las
Vegas, USA), pp. 52–60, IEEE, Apr. 2011.

[8] R. C. Pinto and J. Rufino, “Towards non-invasive run-
time verification of real-time systems,” in 26th Euromi-
cro Conf. on Real-Time Systems - WIP Session, (Madrid,
Spain), pp. 25–28, July 2014.

[9] ARM, Cambridge, England, ARM CoreSight Architec-
ture Specification, 2.0 ed., Sept. 2013.

[10] R. Backasch, C. Hochberger, A. Weiss, M. Leucker,
and R. Lasslop, “Runtime verification for multicore
SoC with high-quality trace data,” ACM Transactions
on Design Automation of Electronic Systems (TODAES),
vol. 18, p. 18, Mar. 2013.

[11] J. Rufino, “Runtime verification monitors,” tech. rep.,
Faculdade de Ciências da Universidade de Lisboa, Por-
tugal, 2018.

[12] N. Decker, P. Gottschling, C. Hochberger, M. Leucker,
T. Scheffel, M. Schmitz, and A. Weiss, “Rapidly ad-
justable non-intrusive online monitoring for multi-core
systems,” in Brazilian Symposium on Formal Methods,
pp. 179–196, Springer, 2017.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and
A. Schramm, “TeSSLa: Runtime verification of non-
synchronized real-time streams,” in ACM Symp. on Ap-
plied Computing (SAC), (Pau, France), ACM, Apr. 2018.

[14] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime veri-
fication of embedded real-time systems,” Formal Meth-
ods in System Design, vol. 24, no. 3, pp. 203–239, 2014.

[15] A. Kane, O. Chowdhury, A. Datta, and P. Koopman,
“A case study on runtime monitoring of an autonomous
research vehicle (ARV) system,” in Proc. 15th Int. Conf.
on Runtime Verification, (Vienna, Austria), Sept. 2015.

[16] J. C. Lee and R. Lysecky, “System-level observation
framework for non-intrusive runtime monitoring of em-
bedded systems,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 20, no. 42, 2015.

[17] G. Callow, G. Watson, and R. Kalawsky, “System mod-
elling for run-time verification and validation of autono-
mous systems,” in Proc. 5th Int. Conf. on System of
Systems Engineering, (Loughborough, UK), June 2010.

[18] P. Wagner, T. Wild, and A. Herkersdorf, “DiaSys: Im-
proving SoC insight through on-chip diagnosis,” Journal
of Systems Architecture, vol. 75, Apr. 2017.

Volume xx, Number y, May 2018 Ada User Jour na l

F-G&$7=2+-,2#)702#768

!"#$%&'()$

!"#$)*+,-*$.$

!"#$)*+,-*$/$ 0!1'$

2
&
3
,4&

($

&
5-,66&

5-&
!*$

+*(),-4$

278$

2
&
3
,4&

($

-69$
278$

*84$
-69$
1*3$

-69$
1*3$278$278$278$

')-$
-69-69-69-69

2
&
3
,4&

($

')-$

!"#$)*+,-*$/$ 0!1'$

-69-69

!"#$)*+,-*$.$!"#$)*+,-*$.$

),1,4'6$

'3'6&1$

'-4,+*$

!"#

0!1'$

574$

)/$

).$

2
&
3
,4&

($

&
5-,66&

5-&
!*$

$"#

Fig. 3. Monitoring design under test: a) the hardware monitor is external to the design under test sharing the same clock
generator; b) the emulated design is implemented together with the monitor in the same hardware.

JTAG is nowadays the most popular standard for on-chip instrumentation. Many modern processor architec-
tures such as ARM, x86, MIPS are using JTAG protocol as the foundation for complex data/instruction tracing
and debugging. The JTAG port enables the control over the processor that can be halted, single stepped or
run freely. However, the possibility to halt the processor running real-time applications can introduce delays in
the normal execution altering important timing constraints of the system. For this reason, some designs enable
debuggers to access only registers and data buses without the need of halting the processors.

4.2 Software Instrumentation

Software instrumentation (SI) is a well-established method employed in many applications including software
profiling, performance analysis, optimization, testing and runtime verification. SI consists in adding extra code
to track the execution of particular software components and to output an execution trace that can be monitored.
The two main approaches for software instrumentation are performed either at the source code level [36, 136,
105, 10, 138, 121] or at the binary level [34, 40, 114, 119, 108]. Furthermore, SI can be static or dynamic whether
they occur before (i.e., compilation-/link-time) or at execution time (i.e., tracking dynamically linked libraries).

Source code instrumentation consists in adding manually or automatically extra instructions to the software
source files before the compilation. Nowadays, there are several instrumentation frameworks [36, 136, 105, 10,
138, 121] available for the main popular programming languages such as Java, C and C++, or even mobile
platforms running on Android [72, 73, 66, 61]. For example, aspect-oriented programming (AOP) environments
usually provide static weaving mechanisms that enable to add at compile-time an additional behaviour to the
existing source code without modifying the original source code. The key idea (see Figure 4) is to apply special
instructions and code segments (called advices) contained in a specification file (aspect) that indicate what
methods (called pointcuts) should be handled by the aspect code. For example, it is possible to specify how to
add some additional code to log all the function calls when the function’s name starts with a particular prefix.
An aspect weaver is then the component responsible to process the advice instructions and weave them together
with original source files, generating the final source code that is compiled into an executable. Although in many
AOP frameworks the weaving is generally performed statically at the level of source code, there are also cases
such as in AspectWerkz [39] where the weaving can occur also dynamically at level of bytecode.

SI is generally limited by the execution coverage. This means that if some parts of the instrumented code
are not reachable during the execution, the instrumentation will not provide any information. Furthermore, SI
generally introduces a computational overhead that changes the timing-related behaviour of the instrumented
program. This could be unacceptable in applications where preserving real-time constraints is extremely im-
portant to meet safety critical requirements. In the worst case scenario the overhead of SI may be also the

From: Ezio Bartocci, Yliès Falcone, Adrian Francalanza, Giles Reger. Introduction to Runtime Verification. Lectures on Runtime
Verification. Introductory and Advanced Topics, 10457, Springer, pp.1-33, 2018, Lecture Notes in Computer Science

Debugging

Requirements
• Quick	loop	for	
synthesizing	new	
properties	on	the	
test	system
• Still	long-term	
observability	useful
• Change	monitoring	
focus	dependent	
on	previous	
outcome

Observed
fault

Hypothesis

Experiment

Observation
and conclusion

Fix

Refine
hypothesis

New
hypothesis

SoC approach	with	TeSSLa specifications
4 In tegra t ing TeSSLa in to a SoC

C compiler

analyser

TeSSLa compiler

Leon
processor

system
observer

monitor

synthesizer

hardware platform (FPGA)

C code binary

TeSSLa
specification

debug symbols

dependency graph

monitor in
Verilog

data
events report

observation points

Figure 3: An overview over our approach.

description languages. It can be shown that TeSSLa speci-
fications are directly translatable into hardware description
language like Verilog.

Hardware-based observation is especially useful in domains
with long observation times. Therefore we introduce the
use case of task runtime observation of a satellite navigation
system to show a possible application with this approach.

This paper is the first step towards integrating TeSSLa into
a SoC. The use case prototype, showing the feasibility of
hardware-based observation within a SoC, needs further work,
namely with regard to: the exploitation of the monitoring
infrastructure [11]; the translation from TeSSLa to a hardware
description language; the definition of an effective algorithm
for the direct translation from the TeSSLa specification.

References
[1] M. Leucker and C. Schallhart, “A brief account of run-

time verification,” The Journal of Logic and Algebric
Programming, vol. 78, pp. 293–303, May-Jun 2009.

[2] Y. Falcone, K. Havelund, and G. Reger, Engineering
Dependable Software Systems, vol. 34, ch. A Tutorial
on Runtime Verification, pp. 141–175. Marktoberdorf,
Germany: IOS Press Ebooks, 2013.

[3] IEEE, 1076.1-2017 - IEEE Standard VHDL Analog and
Mixed-Signal Extensions, Jan. 2018.

[4] IEEE, 1800-2017 - IEEE Standard for SystemVerilog–
Unified Hardware Design, Specification, and Verifica-
tion Language, Feb. 2018.

[5] L. Convent, S. Hungerecker, M. Leucker, T. Schef-
fel, M. Schmitz, and D. Thoma, “TeSSLa: a temporal
stream-based specification language,” in International
Colloquium on Theoretical Aspects of Computing (IC-
TAC), 2018. Submitted for publication.

[6] C. Watterson and D. Heffernan, “Runtime verification
and monitoring of embedded systems,” Software, IET,
vol. 1, Oct. 2007.

[7] J. C. Lee, A. S. Gardner, and R. Lysecky, “Hardware
observability framework for minimally intrusive online
monitoring of embedded systems,” in Proc. 18th Int.
Conf. on Engineering of Computer Based Systems, (Las
Vegas, USA), pp. 52–60, IEEE, Apr. 2011.

[8] R. C. Pinto and J. Rufino, “Towards non-invasive run-
time verification of real-time systems,” in 26th Euromi-
cro Conf. on Real-Time Systems - WIP Session, (Madrid,
Spain), pp. 25–28, July 2014.

[9] ARM, Cambridge, England, ARM CoreSight Architec-
ture Specification, 2.0 ed., Sept. 2013.

[10] R. Backasch, C. Hochberger, A. Weiss, M. Leucker,
and R. Lasslop, “Runtime verification for multicore
SoC with high-quality trace data,” ACM Transactions
on Design Automation of Electronic Systems (TODAES),
vol. 18, p. 18, Mar. 2013.

[11] J. Rufino, “Runtime verification monitors,” tech. rep.,
Faculdade de Ciências da Universidade de Lisboa, Por-
tugal, 2018.

[12] N. Decker, P. Gottschling, C. Hochberger, M. Leucker,
T. Scheffel, M. Schmitz, and A. Weiss, “Rapidly ad-
justable non-intrusive online monitoring for multi-core
systems,” in Brazilian Symposium on Formal Methods,
pp. 179–196, Springer, 2017.

[13] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and
A. Schramm, “TeSSLa: Runtime verification of non-
synchronized real-time streams,” in ACM Symp. on Ap-
plied Computing (SAC), (Pau, France), ACM, Apr. 2018.

[14] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime veri-
fication of embedded real-time systems,” Formal Meth-
ods in System Design, vol. 24, no. 3, pp. 203–239, 2014.

[15] A. Kane, O. Chowdhury, A. Datta, and P. Koopman,
“A case study on runtime monitoring of an autonomous
research vehicle (ARV) system,” in Proc. 15th Int. Conf.
on Runtime Verification, (Vienna, Austria), Sept. 2015.

[16] J. C. Lee and R. Lysecky, “System-level observation
framework for non-intrusive runtime monitoring of em-
bedded systems,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 20, no. 42, 2015.

[17] G. Callow, G. Watson, and R. Kalawsky, “System mod-
elling for run-time verification and validation of autono-
mous systems,” in Proc. 5th Int. Conf. on System of
Systems Engineering, (Loughborough, UK), June 2010.

[18] P. Wagner, T. Wild, and A. Herkersdorf, “DiaSys: Im-
proving SoC insight through on-chip diagnosis,” Journal
of Systems Architecture, vol. 75, Apr. 2017.

Volume xx, Number y, May 2018 Ada User Jour na l

Rico Backasch, Christian Hochberger, Alexander Weiss, Martin Leucker, Richard Lasslop:
Runtime verification for multicore SoC with high-quality trace data. ACM Trans. Design Autom. Electr. Syst. 18(2): 18:1-
18:26 (2013)

• Use	interpreter	of	monitor
• Synthesize	code/table	for	interpretation
• Loadable	into	memory	of	interpreter

The	COEMS	approach
Continuous	Online	Observation	for	Embedded	Multi-core	Systems
EU	Horizon	2020	project

43&7>BC=A7>2+)2#,-*.

-&%.)#/%$0'12 (34)+,

X++)9%+ ?)+7&1@1D%)/

?7"@)/'N19"&%"

?7"@)/'X*/$#%"

GYD/,*@)& FZ [)/$@"&C)$ R'\)/$)#&'81#6"0
-&%.)#/%$0'12 XFF@%)C'=+%)&+)

X%#4*/

]H

?7%/'F#1W)+$ 7"/ #)+)%.)C 2*&C%&D 2#19 $7) T*#1F)"&'
-&%1&^/ G1#%>1& UVUV'#)/)"#+7 "&C %&&1."$%1& F#1D#"99)

*&C)# D#"&$ "D#))9)&$ &1A'_HUV]`A

B(I&1,-/&)

! a&+#)"/)'$)/$')22%+%)&+0
! a&+#)"/)'C)4*D')22%+%)&+0
! a&+#)"/)'$)/$')22)+$%.%$0
! a9F#1.))94)CC)C'/0/$)9/ F)#21#9"&+)

! b1#)94)CC)C 9*@$%+1#) /0/$)9/ cXN!')$+Ad
! N*&&%&D c9*@$%$7#)"C)Cd'<'F#1D#"9/
! M)#7"F/ 1&'(%&*B

9@@5-1",-2+) <
A&.-'F2#."578&#-0-1",-2+

! b%&C%&D :"$"'N"+)/

! b%&C%&D ?%9%&D'e*D/

! b%&C%&D'b*&+$%1&"@ e*D/

! !)"/*#%&D <1.)#"D)

! !)"/*#)9)&$'12'\1#/$E<"/)'TB)+*$%1&'?%9)
"&C'\1#/$E<"/)'N)/F1&/)'?%9)

>BC=A7)&,'*@

]`

!"#$%
&'()'*+,-&.*//)'0

12345+67/*89

&'()'*
-*.&'/:-;.:)&' 7'7(</)/

&'()'*+

3!

&;:,;:+&=+-*/;(:/
!3>+?

/</:*@A&'A.B),

!3>+C

!3>+D

!3>+E

!"#$%
&'()!**!*+)*

(%,#)&
$

-%!-$%(
./$",00

)*0

!"#$%"#&'()"*+,#-'./(012

345'.167'8,#*&9:1;'<'8,#*&9:1=>2

5#
"?
&'
@4

++&
#'"

A$
'8
,A

?&
A*
#"
*,
#

5#"?&'3"*"'
(#&:B#,?&CCDAE'

"A$
8,A*#,)'/),%'
6&?,AC*#4?*D,A

FG&A*'H*#&"-'
1A")ICDC

.GD"'7,AD*,#DAE2
FG&A*C

8:8,$&

@DA"#I

JKC&#G"*D,A
8,A+DE4#"*D,A

5&HHL"'8,-BD)&#

JKC&#G"*D,A
HB&?D+D?"*D,A

7,AD*,#'HB&?D+D?"*D,A
.DA'5&HHL"')"AE4"E&2

7,AD*,#
8,A+DE4#"*D,A

H57<
M57

(&#

7&-

7&-

8(NO

8(NP

8(NQ

8(NA

(/5<
F57

(/5<
F57

(/5<
F57

(/5<
F57

8JF7H'F)&-&A*C

6&B,#*

HB&?C

JKR&?*'?,$&S'
$&K4E'CI-K,)C

5#
"A

C-
DC
CD,

A

5#
"?
&'
(,

#*

8:8,-BD)&# 1A")IC&#

/#,A*'FA$

AD),&.7B/&#/-&%

Rapidly adjustable Embedded	Trace	Online	
Monitoring	– RETOM

Trace Data

Program

Monitoring

User

Trace
Reconstruction

Processor
with ETU

Event Stream

Program
Compiler

Binary

Property
Compiler

(Adjusted) Property

Configuration

Monitoring Output

B()&#/",-2+7A@&1-0-1",-2+

#4"52+25&,2*' *+ &,*325 &/,"+&5,! ,* 6" *6!"/7".
! T@)9)&$/'12 =1*#+)'<1C)

! M#1D#"9'(%&)
! T&$)#%&D'R'()".%&D'"'b*&+$%1&'R'TB+)F$%1&
! N)"C%&D'R'\#%$%&D'."#%"4@)/

! T@)9)&$/ 12'$7)'e%&"#0
! M<'XCC#)//
! <"@@/ R'N)$*#&/
! =F)+%2%+ SF)#"$%1&/'

c)ADA'b@1"$%&D'M1%&$'SF)#"$%1&/d
! G"#C6"#) =*FF1#$)C'a&/$#*9)&$"$%1&

! a?!;'=?!

!"#$%"#&'()"*+,#-'./(012

345'.167'8,#*&9:1;'<'8,#*&9:1=>2

5#
"?
&'
@4

++&
#'"

A$
'8
,A

?&
A*
#"
*,
#

5#"?&'3"*"'
(#&:B#,?&CCDAE'

"A$
8,A*#,)'/),%'
6&?,AC*#4?*D,A

FG&A*'H*#&"-'
1A")ICDC

.GD"'7,AD*,#DAE2
FG&A*C

8:8,$&

@DA"#I

JKC&#G"*D,A
8,A+DE4#"*D,A

5&HHL"'8,-BD)&#

JKC&#G"*D,A
HB&?D+D?"*D,A

7,AD*,#'HB&?D+D?"*D,A
.DA'5&HHL"')"AE4"E&2

7,AD*,#
8,A+DE4#"*D,A

H57<
M57

(&#

7&-

7&-

8(NO

8(NP

8(NQ

8(NA

(/5<
F57

(/5<
F57

(/5<
F57

(/5<
F57

8JF7H'F)&-&A*C

6&B,#*

HB&?C

JKR&?*'?,$&S'
$&K4E'CI-K,)C

5#
"A

C-
DC
CD,

A

5#
"?
&'
(,

#*

8:8,-BD)&# 1A")IC&#

/#,A*'FA$

JKC&#G"*D,A
HB&?D+D?"*D,A

!"#$%"#&'()"*+,#-'./(012

345'.167'8,#*&9:1;'<'8,#*&9:1=>2

5#
"?
&'
@4

++&
#'"

A$
'8
,A

?&
A*
#"
*,
#

5#"?&'3"*"'
(#&:B#,?&CCDAE'

"A$
8,A*#,)'/),%'
6&?,AC*#4?*D,A

FG&A*'H*#&"-'
1A")ICDC

.GD"'7,AD*,#DAE2
FG&A*C

8:8,$&

@DA"#I

JKC&#G"*D,A
8,A+DE4#"*D,A

5&HHL"'8,-BD)&#

JKC&#G"*D,A
HB&?D+D?"*D,A

7,AD*,#'HB&?D+D?"*D,A
.DA'5&HHL"')"AE4"E&2

7,AD*,#
8,A+DE4#"*D,A

H57<
M57

(&#

7&-

7&-

8(NO

8(NP

8(NQ

8(NA

(/5<
F57

(/5<
F57

(/5<
F57

(/5<
F57

8JF7H'F)&-&A*C

6&B,#*

HB&?C

JKR&?*'?,$&S'
$&K4E'CI-K,)C

5#
"A

C-
DC
CD,

A

5#
"?
&'
(,

#*

8:8,-BD)&# 1A")IC&#

/#,A*'FA$

B()&#/",-2+7A@&1-0-1",-2+

JKC&#G"*D,A
HB&?D+D?"*D,A

!"#$%"#&'()"*+,#-'./(012

345'.167'8,#*&9:1;'<'8,#*&9:1=>2

5#
"?
&'
@4

++&
#'"

A$
'8
,A

?&
A*
#"
*,
#

5#"?&'3"*"'
(#&:B#,?&CCDAE'

"A$
8,A*#,)'/),%'
6&?,AC*#4?*D,A

FG&A*'H*#&"-'
1A")ICDC

.GD"'7,AD*,#DAE2
FG&A*C

8:8,$&

@DA"#I

JKC&#G"*D,A
8,A+DE4#"*D,A

5&HHL"'8,-BD)&#

JKC&#G"*D,A
HB&?D+D?"*D,A

7,AD*,#'HB&?D+D?"*D,A
.DA'5&HHL"')"AE4"E&2

7,AD*,#
8,A+DE4#"*D,A

H57<
M57

(&#

7&-

7&-

8(NO

8(NP

8(NQ

8(NA

(/5<
F57

(/5<
F57

(/5<
F57

(/5<
F57

8JF7H'F)&-&A*C

6&B,#*

HB&?C

JKR&?*'?,$&S'
$&K4E'CI-K,)C

5#
"A

C-
DC
CD,

A

5#
"?
&'
(,

#*

8:8,-BD)&# 1A")IC&#

/#,A*'FA$

=2+-,2#7A@&1-0-1",-2+7
E"+:*":&7J4&AAE"K

! T.)&$E=$#)"9EX&"@0/%/
T.)&$'1#C)#%&D'+1&/$#"%&$/;'$%9%&D'+1&/$#"%&$/
"&C'P*"&$%$"$%.)'"&"@0/%/

! :)+@"#"$%.)'/$0@)
:)/+#%4)'+1##)+$&)//'+#%$)#%1&'1#'"&"@0/%/'D1"@
6%$71*$'7".%&D'$1'$7%&,'"41*$'$7)'"@D1#%$79%+'+7)+,

! !1C*@"#%$0
"@@16%&D'"4/$#"+$%1&/'
4"/)C'1&'2)6'F#%9%$%.)/

! ?%9)
"/'2%#/$E+@"//'+%$%>)&

! T.)&$/'f'/%D&"@/
4"/)C'1&'1&)'+1991&'"4/$#"+$%1&

! b%&%$)'9)91#0
"@@16%&D')B)+*$%1&'1&'bMgX 7,AD*,#'HB&?D+D?"*D,A

.DA'5&HHL"')"AE4"E&2

Specification	Languages	for	RV

Streams

Concurrency/Distribution

Streams

Time?	Synchrony/Ticks

Equational specifications,	data,	time,	
concurrency

stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Definition 1 (LOLA specification) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true . Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Definition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:
σi(j) = val(ei)(j) for 0 ≤ j ≤ N

LOLA	
[D’Angelo	et	al.]

Streams

Time?	Synchrony/Ticks

Time	triggered	systems

Event-triggered

TeSSLa’s Streams

Streams

Time?	Events

4

x

x x

3 45

Streams	of	Programs	- After	Discretization		

Program-level Perspective

Abstract representation of system state and behaviour

Values Program events
e.g., of a program

variable x

e.g., call to my_func()

5 6 1 2
@cpu1 @cpu2

I Observation over time) Streams

I Location

SMD 2015 6/20

Streams

Program-level Perspective

Abstract representation of system state and behaviour

Values Program events
e.g., of a program

variable x

e.g., call to my_func()

5 6 1 2
@cpu1 @cpu2

I Observation over time) Streams

I Location

SMD 2015 6/20

A,#&".)73&#& 02# 68Stream-based Representation

Time

Value x 998 42 2012 1280 10 1404

Event irq4
Event (with value) f 17 98 0 23

x > 1023

changeOf(x)

f inPast <=10ms

Observations
(Input streams)

Derived streams
(definable)

I compute information from observations

I formulate and monitor complex correctness properties

I define complex triggers

SMD 2015 7/20

4&AAE" (D7CG".@5&TeSSLa by Example

a 5 2

b

3 1 4

c 8 5 3 6

def c := a + b

e

x 0 1 2 3 4 5 6

r

x 0 1 2 3 0 1 0 1 2

def x := eventCount(e)

8

TeSSLa by Example

a 5 2

b

3 1 4

c 8 5 3 6

def c := a + b

e

x 0 1 2 3 4 5 6

r

x 0 1 2 3 0 1 0 1 2

def x := eventCount(e)

8

4&AAE" (D7CG".@5&TeSSLa by Example

a 5 2

b

3 1 4

c 8 5 3 6

def c := a + b

e

x 0 1 2 3 4 5 6

r

x 0 1 2 3 0 1 0 1 2

def x := eventCount(e, reset = r)

8

4&AAE" < ;*#),7?",,&#+7J="1#2)KTeSSLa by a More Complex Example

a 5 2

b

3 1 4

c tt ttff ff

e

p tt

tt tt tt

tt

ttff

ff

ff

2 s 1 s 2 s 1 s 2 s 1 s 2 s

def c := a > b

def p := if c

then noEvent(e, since = rising(c))

else bursts(e, burstLength = 2s,

waitingPeriod = 1s,

burstAmount = 3,

since = falling(c))

9

4&AAE" < ;*#),7?",,&#+7J="1#2)KTeSSLa by a More Complex Example

a 5 2

b

3 1 4

c tt ttff ff

e

p

tt

tt tt

tt

tt

tt

ff ff

ff

2 s 1 s 2 s 1 s 2 s 1 s 2 s

def c := a > b

def p := if c

then noEvent(e, since = rising(c))

else bursts(e, burstLength = 2s,

waitingPeriod = 1s,

burstAmount = 3,

since = falling(c))

9

4&AAE" < ;*#),7?",,&#+7J="1#2)KTeSSLa by a More Complex Example

a 5 2

b

3 1 4

c tt ttff ff

e

p

tt

tt tt tt

tt

ttff ff ff

2 s 1 s 2 s 1 s 2 s 1 s 2 s

def c := a > b

def p := if c

then noEvent(e, since = rising(c))

else bursts(e, burstLength = 2s,

waitingPeriod = 1s,

burstAmount = 3,

since = falling(c))

9

TeSSLa’s operators
TeSSLa core operators

default, defaultFrom
I Initialize streams
I Start of recursion

time
I Get timestamps of stream
I Replaces data values with

timestamps
I Only way to read timestamps

lift
I Lifts standard functions to

streams
I Used to manipulate data,

events, ...

last
I Refers to previous value of a

stream
I Recursion

delayedLast
I Only way to create events
I Takes a stream and delays

events by its current value
I Output events have the

previous value of another
given stream

S. Hungerecker, M. Leucker, T. Scheffel, M. Schmitz, D. Thoma Dagstuhl ’17 5

TeSSLa’s fragments
TeSSLa: Temporal Stream-based Specification Language 15

data

n

o

n

e

b

o

u

n

d

e

d

u

n

b

o

u

n

d

e

d

t
i
m

e
s
t
a
m

p
s

o

r

d

e

r

i

n

g

c

o

m

p

a

r

i

s

o

n

c

r

e

a

t

i

o

n

bool

TeSSLa

DFST

bool+c

TeSSLa

TFST

TeSSLa

T
eS

SL
a

+
de

la
y

TeSSLa
+Data

full

TeSSLa

Fig. 1. TeSSLa fragments are restricted regarding a)
event values and available data structures and b) event
timestamps and how events sequences are recognized and
generated: TeSSLa

bool

only checks event ordering like
deterministic Büchi automata and BSRV [7] (LOLA re-
stricted to boolean streams). TeSSLa

bool+c

additionally
has timestamp comparison with constants like deter-
ministic timed automata. TeSSLa has arbitrary bounded

data structures and arbitrary computations on the times-
tamps. Full TeSSLa allows unbounded data structures
and the creation of new timestamps via delay.

expressions are restricted as follows, where f 2 Bn ⇢ B:
e := nil | unit | x | lift(f)(e, . . . , e) | lift(gv)(time(e), last(time(e), e)) | last(e, e)
Time comparison is restricted to expressions lift(gv)(time(a), last(time(b), a))
for streams a, b 2 SB and a constant v 2 T, where gv is a function gv : T⇥T ! B
of the form gv(t1, t2) = t1 7 t2 + v with 7 2 {<,>}, which allows checking the
temporal distance of the current events of two streams. This is directly related
to how clock constraints in timed automata [1][3] work.

A timed finite state transducer (TFST) is a DFSTs with an additional set
of clocks C and � : Q ⇥ ⌃ ⇥ ⇥(C) ! Q ⇥ 2

C ⇥ � where ⇥(C) is the set of
clock constraints. A clock constraint # 2 ⇥(C) is defined over the grammar
::= true | T x + c | T � x + c | ¬# | # ^ #, where x 2 C, and c 2 T is a
constant and T refers to the current time. � now also takes a clock constraint and
provides a set of clocks that have to be reset to T when taking this transition. A
run of a TFST is the same as the one of a DFST except that there are timestamps
in the input and output word, an additional clock constraint has to be fulfilled
to take a transitions and when taking a transitions, some clocks are also set to
the current time T . A more formal definition can be found in Appendix A.2.

TFSTs resemble timed automata using the notion of clock constraints from [3].
A TFST is called deterministic, or DTFST, iff for any two different transitions
⌘1, ⌘2 2 � their conjuncted clock constraints #⌘1 ^ #⌘2 are unsatisfiable.

To show that TeSSLa
bool+c

and DTFSTs have the same expressiveness, we
again encode words as streams and vice versa, but this time ↵⌃ and �⌃ preserve
the timestamps. Hence both representations are now isomorphic and we can use
the inverse encoding functions for decoding:

Theorem 8. For a DTFST R = (⌃,�, Q, q0, C, �) a TeSSLa

bool+c

formula 'R

exists and for a TeSSLa

bool+c

formula ' a DTFST R' = (⌃,�, Q, q0, C, �) exists:

JRK = ↵�1
� � J'RK � ↵⌃ and J'K = ��1

� �R' � �⌃ .

Translating DTFST to TeSSLa

bool+c

We reuse the translation for DFSTs with the
following adjustments: We extend the stream dq,� to dq,�,# by adding the timing
constraint #, which is translated by lifting the boolean combination to signal
semantics and translating the constraint T 7 x + c to time(merge{sp | p 2

EU	Horizon	2020	Project:	COEMS

43&7>BC=A7>2+)2#,-*.

-&%.)#/%$0'12 (34)+,

X++)9%+ ?)+7&1@1D%)/

?7"@)/'N19"&%"

?7"@)/'X*/$#%"

GYD/,*@)& FZ [)/$@"&C)$ R'\)/$)#&'81#6"0
-&%.)#/%$0'12 XFF@%)C'=+%)&+)

X%#4*/

jV

?7%/'F#1W)+$ 7"/ #)+)%.)C 2*&C%&D 2#19 $7) T*#1F)"&'
-&%1&^/ G1#%>1& UVUV'#)/)"#+7 "&C %&&1."$%1& F#1D#"99)

*&C)# D#"&$ "D#))9)&$ &1A'_HUV]`A

j]j]

T?7A,#*1,*#&7

!

!

!" #$%&'$'()*)+,(-

!". /,01-%&*(-—-/,01-%*21*3'45-6'&+7'0*8&'4-*(6-$+&'4),('4--

!".". 97'0*&&-4)0:2):0'-,;-)<'-=,01-%&*(-
"#$!%&'()!*+,-$./!01!20302$2!04/,!5!6,+7!*8.789$1:!"#$;!1*84!,3$+!<8489$<$4/!,=!/#$!%&'()!*+,>
-$./!?@A!BCD!+$EF0+$<$4/1!$G0.0/8/0,4!=,+!/8+9$/!2,<8041!?@AHCD!$1*$.08GG;!,3$+!/#$!%&'()!<$/#,21!
2$8G049!60/#!I,/#!/$.#40.8G!#8+268+$!842!1,=/68+$!+$8G0J8/0,4D!0<*G$<$4/8/0,4D!842!2$<,41/+8/0,4!
?@A!KD!@ALD!@A!MD! +$1*$./03$G;CD!842!/#$!%&'()!<$/#,2,G,90.8G!*,/$4/08G!?@A!NC:!O048GG;D!@A!5!
822+$11$1!/#$!2011$<048/0,4D!$P*G,0/8/0,4D!842!+$1*$./03$!.,<<F40.8/0,41!8./030/0$1:!
"#$!@A1!8+$!2$*0./$2!04!O09F+$!K>B!/,9$/#$+!60/#!/#$0+!<804!8./030/0$1!842!/#$0+!04/$+2$*$42$4.0$1:!
QGG!*+,-$./!8./030/0$1!8+$!.8++0$2!,F/! 04!84!890G$! =81#0,4:!"#01! 0<*G0$1!8! =$8/F+$!,+0$4/$2!8**+,8.#D!
.,4/04F,F1!04/$9+8/0,4!842!$8+G;!+G81$!.842028/$1:!@$!8+$!1/8+/049!60/#!#09#!+017!R!#09#!9804!8./03>
0/0$1D!842!822!1FI1$EF$4/G;!=F+/#$+!=$8/F+$1!/,!8G68;1!6,+7049!+G81$!.842028/$1!,=!/#$!#8+268+$!
842!1,=/68+$:!

!!

!"#$%

&'()*+','-./0%

1)/*-'//%2-3%4'526%

788'9.2-8'

:2/;%#<=$%

>-3)/.+*26%

&'()*+','-./

!"=$%?2-25','-.%2-3%78.*@*.A%BCC+3*-2.*C-

:2/;%#<#$%

:CC6%D)26*E*82.*C-%

&'()*+','-./

:2/;%#<F$%

1)/*-'//%2-3%

4'526%788'9.2-8'

!"F$%

G2+3H2+'%"62.EC+,%

2-3%I@'-.%"+C8'//*-5

:2/;%F<=$%

G2+3H2+'%962.EC+,

:2/;%F<#$%

JK/'+@2.*C-%

&'/C)+8'/

:2/;%F<F$%

I@'-.%"+C8'//*-5

!"L$%

MCE.H2+'%:CC6/%

:2/;%L<=$%

M.2.*8%7-26A/*/%

:2/;%L<#$%

JK/'+@2.*C-N?C-*O

.C+*-5%P+2,'HC+;

:2/;%L<F$%

>-/.+),'-.2.*C-

:'8Q-*826%

&'()*+','-./

1)/*-'//%

"+*C+*.*'/

!"R$%

7996*82.*C-/

:2/;%R<=$%

?)6.*8C+'%

>-.'5+2.*C-

:2/;%R<#$%

?)6.*8C+'%PC+,26%

S'+*E*82.*C-%

:'/.*-5

:2/;%R<F$%

>,9+C@'3%T'K)5%

IEE*8*'-8A

P''3K28;%

C-%)/'%82/'/

U/'%82/'/

U/'+%E''3K28;%N

*,9+C@','-./

P''3K28;%C-%

&'()*+','-./
:2/;%R<L$%

:CC6%D)26*E*82.*C-%

M)99C+.

!"V$%T*//',*-2.*C-0%IW96C*.2.*C-%2-3%BC,,)-*82.*C-%78.*@*.*'/

!"X$%T',C-/.+2.C+%2-3%J@'+266%

I@26)2.*C-

!
>+3:0'-!?.@-A9BCD-E0,F'2)-4)0:2):0'-

! -

>BC=A7)&,'*@

jU

!"#$%
&'()'*+,-&.*//)'0

12345+67/*89

&'()'*
-*.&'/:-;.:)&' 7'7(</)/

&'()'*+

3!

&;:,;:+&=+-*/;(:/
!3>+?

/</:*@A&'A.B),

!3>+C

!3>+D

!3>+E

!"#$%
&'()!**!*+)*

(%,#)&
$

-%!-$%(
./$",00

)*0

!"#$%"#&7?5",02#.
! G"#C6"#)

! [%#$)BE_'/)#%)/'bMgX'c"."%@"4@)d
! l0&P'-@$#"/+"@)m'=S<'c*&C)#'C).)@1F9)&$d
! N(:NX!H'9)91#0'21#'2"/$'@11,*F'$"4@)/
! a&$)#2"+)'$1'X*#1#"'c8)B*/;'G==?Md
! [Mn'R'b!<'21#9'2"+$1#

! b*&+$%1&"@%$0
! S&@%&)'$#"+)'C"$"'F#1+)//%&D'

c<1#)/%D7$'$#"+)'C"$"'Eo').)&$'/$#)"9d
! =*FF1#$)C'"#+7%$)+$*#)/O'

XN!'<1#$)BEXp;'XN!'<1#$)BEXkHq;
Q1#aQ'MM<q;'a&2%&)1&'X*#%Bq

! S&@%&)'F#1+)//%&D'12').)&$'/$#)"9

q*&C)#'C).)@1F9)&$

T&(7UHC7< %-,37,#"1&

T&(7UHC7%-,37>'12$&7<)20,%"#&7("1V&+$

T&(7UHC7< %-,37>'12$&7< 3"#$%"#&7("1V&+$

Conclusions

Summary

• Sometimes	software	annotations	not	acceptable
• Usage	of	trace	functionality	of	modern	processors	feasible
• Extra	hardware	may	be	used	to	monitor	non-intrusively
• Sophisticated	ideas	necessary	to	make	overall	approach	feasible
• Hardware-based	RV	might	be	a	game	changer

Future	Work

• Abstractions	in	TeSSLa
• Precise	Relation	of	TeSSLa fragments	to	STL
• Partial-Order	Semantics

• Support	for	ITM	traces
• Increase	performance	of	implementation
• Achieve	TRL6
• Enhance	training	material

