
Computational modeling, formal analysis and tools
for systems biology

Ezio Bartocci1, Pietro Lió2

1 Faculty of Informatics, Technische Universität Wien, Vienna, Austria
2 Computer Laboratory, University of Cambridge, Cambridge, UK

∗ ezio.bartocci@tuwien.ac.at

Abstract
As the amount of biological data in the public domain grows, so does the range of modeling and
analysis techniques employed in systems biology. In recent years, a number of theoretical
computer science developments have enabled modeling methodology to keep pace. The growing
interest in systems biology in executable models and their analysis has necessitated the
borrowing of terms and methods from computer science, such as formal analysis, model
checking, static analysis, and runtime verification. Here, we discuss the most important and
exciting computational methods and tools currently available to systems biologists. We believe
that a deeper understanding of the concepts and theory highlighted in this review will produce
better software practice, improved investigation of complex biological processes, and even new
ideas and better feedback into computer science.

Introduction 1

Computer science is nowadays central to a huge range of scientific areas. In its early days, its 2

task was simply to translate a model expressed in a mathematical language into a computer 3

program simulating it. The field has progressed since then, yielding new domain-specific 4

programming languages that are able to directly model a physical process. 5

In both cases, the computational implementation is perceived as a necessary methodological 6

step for systems biologists, because the simple execution of a program provides an in-silico 7

numerical evaluation of the hypotheses, avoiding the use of complex analytical methods and 8

considerably reducing the costs of expensive in-vivo or in-vitro experiments. 9

Recently, the dichotomies between mathematical and computational models have also been 10

subject to a debate (see also [1, 2]) about whether or not the difference between them arises from 11

their ability to be directly executed [1] or stems mostly from the different purposes and 12

approaches adopted by scientists [2]. 13

The novel concepts and principles (and well-designed tools) developed within the computer 14

science community are accompanied by a domain-specific terminology (for example, executable 15

models, expressivity, abstraction, model checking, reachability analysis, formal verification, and 16

static analysis) that is scarcely known in other scientific communities such as systems biology. 17

The introduction and assimilation of these concepts in fields other than computer science may 18

back-propagate new ideas to computer scientists. 19

Recent works have discussed in detail how the methods borrowed from computer science 20

have already benefited and can further benefit various problems in biology [1–6]. With respect 21

to these previous research and review papers, our effort focuses on discussing how the use of 22

newly developed tools could facilitate the understanding of the concepts, practice, and 23

PLOS 1/24

terminology acquisition in the current language of systems biologists. Furthermore, this review 24

will take the further step of communicating the usefulness of using a temporal-logic framework 25

for systems biologists who are looking beyond correlation toward event causality or patterns 26

occurring in biological signals. 27

A non-exhaustive literature review, which is nonetheless an aid to understanding current 28

progress in the field, is then presented. 29

Computational Modeling 30

In the last decade, the area of systems biology has benefited greatly from computational models 31

and techniques previously adopted only in computer science to assess the correctness and safety 32

of a program. In this context, the design of a biological model becomes equivalent to developing 33

a computer program. Various programming languages, often biological domain-specific, provide 34

a means of describing the instruction sequence specifying the control flow of a biological 35

process. 36

The syntax of the language defines the ways the symbols may be combined to create 37

well-formed sentences/instructions. This specification is often represented in a textual way (i.e., 38

a process calculus, rule-based system), but in several cases (i.e., Petri nets, state-charts, etc.) a 39

graphical representation is also available. This helps the user to visualize the process with 40

diagrams displaying the flow of the species in the reactions or the change in the internal states. 41

The semantics reveals the meaning of the syntactically valid instructions, by describing the 42

behavior of the model and how it should be executed by the computer. It is also possible that a 43

model specified using a particular language syntax may be executed using different language 44

semantics: for example, a set of chemical reactions rules can be executed using a continuous 45

semantics (ordinary differential equations (ODEs) on molecular concentrations) or a stochastic 46

semantics (on the number of molecules) depending on the level of approximation/complexity [7] 47

that we may want to achieve. For example, COPASI [8,9] is a tool for numerical simulation and 48

analysis of biochemical networks for both their continuous and stochastic dynamics. 49

In the following we discuss the key features of the main computational modeling approaches 50

that have fallen on fertile ground in systems biology. Fig. 1 provides simple examples, inspired 51

by case studies reported in the literature, of the modeling approaches considered. 52

Process Algebras 53

In recent years, computer scientists have intensively investigated the use of process algebras 54

(PAs) for the modeling and the analysis of biological systems [10–14]. The expressive power of 55

PAs (see Fig. 1: 1st row, 1st column) allows formal specification, without any ambiguity about 56

the interactions, communications, and synchronizations between a collection of concurrent 57

processes (also called agents). The reason for the interest in PAs for systems biology is that 58

biological systems can be considered as concurrent reactive systems, where biological species 59

can be modeled as processes interacting with each other. Another important feature of PAs in the 60

modeling of complex (often multi-scale) biological systems is the compositionality, which offers 61

the possibility of defining the whole system, starting from the specification of its 62

subcomponents. Furthermore, PAs usually permit formal reasoning about equivalences between 63

processes. The leading examples of PAs in computational systems biology include 64

Beta-Binders/BlenX [12], SPiM [15–17], Bio-PEPA [13], sCCP [18], and BioShape [19, 20]. 65

PA specifications are usually employed as intermediate models that are then executed or 66

translated in other computational models, using different semantics: continuous differential 67

(ODEs), stochastic (Continuous Time Markov Chains), or abstract (transitions systems). 68

PLOS 2/24

!"#$%&&'()*%+"('

,-+"./'&-&0%1&'&0(0%'$,("0&'

"2)%3+(&%/'&-&0%1&'
%$/'%$/'

45678-' 45678-'
%*9"'%*9"'

%$/'%$/'

45678:-' 45678-'
%*9"' %*9"'

7'4' ;7';4'

EGFR(ECD!1,aa1092~Y).EGFR(ECD!1,aa1092~Y)

EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)

<(='>?@A:B>'C=''
+CDE>F*>=G'

+##)%(E'E%0H#"I&'

!%0".'E%0&'

">@JKD='('

&CL=@B'0M@=NOPJKD='E>FQDM;'

%=RSA>'4'

%=RSA>'7'

%=RSA>'T'

">@JKD='+'

">@JKD='$'

!)($%'

0#I%E'
0"(E&.0.#E'
%E(+)%/'

0"(E&.0.#E'
E#0'%E(+)%/'

&F@F>'('

$>BB'

&F@F>'+'

&CL=@B'!DNCKU>'

&CL=@B'E>L@KU>'ED'&CL=@B'

&F@F>'$'

!x = kp ! kdx

! x,"E() E[]() || ! y," I() I[]()()

! h x,"E()! h y," I() E || I()

!"#$%&'(!)''*"+,-,./0'(*)'

(='>?@A:B>'C='+>F@'+C=O>M'

! h ()
! ()

||

1234&'-,"5,"6'7,.&'
+,55&"'-,"5,"6'7,.&'
810199&9'/8&01./0'

:/,"'/8&01./0'

*>=>'#=' *>=>'#V'

x

 !x = !kdx

x >!1

x <!2

kp
kd 80/.&,"'5&601513/"'01.&'

80/.&,"'80/5;23/"'01.&'
80/.&,"'2/"2&".013/"'

)(00.$%3+(&%/'
(='>?@A:B>'QCFW'$>BBPB@M'(PFDA@F@'

%B>JFMCJ@B'Q@U>':MD:@L@KD='C=''@'J@MOC@J'KNNP>'
<&99'"/.'73%;91.&5' <&99'73%;91.&5'

'=;9&'

(*%E03+(&%/'

=&2&8./0'
(=&1234&'>6&".)'

?,6"19,"6'@/9&2;9&'
(</%%;",213"6''>6&".)'

A;29&;7'
(=&1234&'>6&".)'

@&77&"6&07'
(<//8&0134&''>6&".7)'

&CL=@B'0M@=NOPJKD=''

4'

7'

T'

f1 = ¬x3 ! x1 " x2()
f2 = x1 ! x3
f3 = ¬x3 " x1 ! x2()

*>=>'

*>=>'

*>=>'

!MDOPJKD='

.=WCXCKD='

$#1!("01%E03+(&%/'

%/9&2;9&'B,"'2C@D'
2/%810.%&".'B6&.'2C<D'

6&.E,"'

2/%810.%&".'B<D'

%/9&2;9&'B@D'

(='>?@A:B>'C='+CD(AXC>=FN'

$#1!("01%E03+(&%/'

%/9&2;9&'B,"'2C@D'
2/%810.%&".'B6&.'2C<D'

6&.E,"'6&.E,"'

2/%810.%&".'B<D'2/%810.%&".'B<D'

%/9&2;9&'B@D'

(='>?@A:B>'C='+CD(AXC>=FN

(*%E03+(&%/'

=&2&8./0'
(=&1234&'>6&".)'(=&1234&'>6&".)'(=&1234&'>6&".)'(=&1234&'>6&".)'(=&1234&'>6&".)'(=&1234&'>6&".)'

?,6"19,"6'@/9&2;9&'
(</%%;",213"6''>6&".)'(</%%;",213"6''>6&".)'

A;29&;7'
(=&1234&'>6&".)'

@&77&"6&07'
(<//8&0134&''>6&".7)'(<//8&0134&''>6&".7)'

A;29&;7'

&CL=@B'0M@=NOPJKD=''

)(00.$%3+(&%/'
(='>?@A:B>'QCFW'$>BBPB@M'(PFDA@F@'

%B>JFMCJ@B'Q@U>':MD:@L@KD='C=''@'J@MOC@J'KNNP>'%B>JFMCJ@B'Q@U>':MD:@L@KD='C=''@'J@MOC@J'KNNP>'
<&99'"/.'73%;91.&5'<&99'"/.'73%;91.&5'

%B>JFMCJ@B'Q@U>':MD:@L@KD='C=''@'J@MOC@J'KNNP>'
<&99'73%;91.&5'

'=;9&'

&!(0.#30%1!#"()'1#/%)&'

+##)%(E'E%0H#"I&'

7'7'

T'T'T'T'T'4'4'

f1f1f = ¬x3 ! x1 " x2()
f2f2f = x1 ! x3
f3f3f = ¬x3 " x1 ! x2()

>=>'>=>'

>=>'>=>'

>=>'>=>'

!MDOPJKD='

.=WCXCKD='.=WCXCKD='.=WCXCKD='.=WCXCKD='

&0(0%'$,("0&'

&F@F>'('&F@F>'('&F@F>'('

$>BB'

&F@F>'+'&F@F>'+'

&CL=@B'!DNCKU>'

&CL=@B'E>L@KU>'&CL=@B'E>L@KU>'&CL=@B'E>L@KU>'&CL=@B'E>L@KU>'&CL=@B'E>L@KU>'&CL=@B'E>L@KU>'ED'&CL=@B'ED'&CL=@B'ED'&CL=@B'ED'&CL=@B'

&F@F>'$'

,-+"./'&-&0%1&'

!x = kpkpk ! kdkdk x

*>=>'#=' *>=>'#V'*>=>'#V'

x

!x = !kdx

x >!1

x <!2

kp
kdkdk 80/.&,"'5&601513/"'01.&'

80/.&,"'80/5;23/"'01.&'
80/.&,"'2/"2&".013/"'

!%0".'E%0&'

">@JKD='('">@JKD='('">@JKD='('

&CL=@B'0M@=NOPJKD='E>FQDM;'

">@JKD='('

%=RSA>'4'

%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'%=RSA>'7'

%=RSA>'T'%=RSA>'T'%=RSA>'T'%=RSA>'T'

">@JKD='+'">@JKD='+'

">@JKD='$'">@JKD='$'">@JKD='$'">@JKD='$'">@JKD='$'">@JKD='$'">@JKD='$'

!)($%'

0#I%E'
0"(E&.0.#E'
%E(+)%/'

0"(E&.0.#E'0"(E&.0.#E'
E#0'%E(+)%/'

'C=''

"2)%3+(&%/'&-&0%1&'
%$/'%$/'%$/'%$/'

45678-'45678-' 45678-'45678-'
%*9"'%*9"'%*9"'

%$/'%$/'%$/'%$/'

4567845678:-':-':-':-' 45678-'45678-'
%*9"'%*9"' %*9"'%*9"'

%$/'%$/'

7'7'7'4' ;;;;7;;4

EGFR(ECD!1,aa1092~Y).EGFR(ECD!1,aa1092~Y)EGFR(ECD!1,aa1092~Y).EGFR(ECD!1,aa1092~Y)EGFR(ECD!1,aa1092~Y).EGFR(ECD!1,aa1092~Y)

EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)EGFR(ECD!1,aa1092~pY).EGFR(ECD!1,aa1092~Y)

<(='>?@A:B>'C=''
+CDE>F*>=+CDE>F*>=G

!"#$%&&'()*%+"('

! x,"E() E[]() || ! y," I() I[]()()

! h x,"E()! y," I() E || I()! h y,(

!"#$%&'(!)''*"+,-,./0'(*)'

(='>?@A:B>'C='+>F@'+C=O>M'

! h ()
! ()

||

1234&'-,"5,"6'7,.&'
+,55&"'-,"5,"6'7,.&'
810199&9'/8&01./0'

:/,"'/8&01./0':/,"'/8&01./0'

Figure 1. Most relevant examples of computational modeling approaches introduced
with toy examples. Related tools are listed in Table 1. References for the examples are as
follows: process algebras [12], compartment-based systems [21], rule-based systems [22],
statecharts [23], hybrid systems [24], Boolean networks [25], Petri nets [26], agent-based
models [27], lattice-based models [28].

Rule-based Systems 69

Rule-based modeling (see Fig. 1: 1st row, 2nd column) has gained a lot of attention among 70

biologists, because its notation is very similar to the chemical reaction representation used in 71

systems biology to model biochemical interactions between molecular species. Consider, for 72

example, the classical enzymatic reaction where an enzyme (E) binds a substrate (S) and 73

produces a product (P) by releasing the enzyme (E). This can be expressed in a very compact 74

and concise description by using the two simple rules: 75

1. E + S � ES 76

2. ES → E + P . 77

One important feature of this modeling technique is that rules, unlike equations, are 78

independent units, so they can be easily changed or modified. Furthermore, the simple syntax of 79

rule-based models can be stored in a file as a human-readable text and can be edited and 80

visualized using a graph representation. This makes rule-based modeling friendly for users 81

without specialized mathematical or computer science skills. Rule-based models can be then 82

translated, using different semantics, to generate other computational models, in order to provide 83

a quantitative (i.e., the amount of a species in time) [22, 29] prediction or a qualitative (i.e., 84

where time is abstracted away) understanding of the system’s emergent behavior. For these 85

PLOS 3/24

reasons, many rule-based modeling languages and tools, such as BIOCHAM [30, 31], 86

Kappa [32], BioNetGen [22, 33], have become very popular among systems biologists in the 87

recent years and have been intensively utilized in concrete case studies [34–36]. We refer to [3] 88

for a more exhaustive review of rule-based modeling. 89

Petri Nets 90

A Petri net (see Fig. 1: 1st row, 3rd column) is a directed graph whose vertices can be divided 91

into two disjoint sets (bipartite graph), a set of nodes called the transitions (meaning events that 92

may occur, i.e., reactions), graphically represented by bars, and a set of nodes called places 93

(meaning the conditions for a reaction to occur, such as the presence of a molecule), graphically 94

represented by circles. Arrows interconnect these nodes, showing the direction of flow, with this 95

main rule: a place node can be connected only to a transition node and vice versa. The data (i.e., 96

species) are generally represented as tokens signified by black marks. The tokens are consumed 97

from the input places through the transitions and then created in the output places. A transition 98

fires whenever it is enabled by the presence of some tokens in one of the places directly 99

connected to it. A concurrent semantics specifies the evolution in time of the token distribution. 100

This modeling framework was introduced by Carl Adam Petri in 1962 with the purpose of 101

describing chemical processes [37], but then was also intensively employed in computer science 102

to specify and analyze concurrent and distributed systems. It is not surprising that this intuitive 103

and graphical modeling style is popular among computational systems biologists [26, 38–40] to 104

describe biochemical reaction systems, where the tokens are interpreted as single molecules of 105

the species involved. The Petri net formalism, as shown also in [41], provides a natural 106

framework, in which both qualitative (given by the static structural topology of the Petri nets) 107

and quantitative (given by the time evolution of the token distribution) analysis are tightly 108

integrated. Important tools for Petri nets used in computational biology are Snoopy [26], 109

MARCIE [42], GreatSPN [43, 44], and Pathway Logic Assistant [45, 46]. 110

Boolean/Qualitative Networks 111

Boolean networks (see Fig. 1: 2nd row, 1st column) were first introduced by Kauffman [25] and 112

then by Thomas [47, 48]. They are often used to approximate the dynamics of genetic regulatory 113

networks by considering genes either activated (true state) or deactivated (false state). A 114

Boolean network is defined in terms of Boolean variables, each one updated by a Boolean 115

function that determines the next truth value state given the inputs from a subset of those 116

variables. This modeling technique, even though it usually introduces a coarse approximation by 117

neglecting intermediate states, is widely employed to analyze the robustness and stability of 118

genetic regulatory networks. For instance, by generating initial random configurations, it is 119

possible, by executing this model, to detect singleton attractors (also called fixed points), where 120

the system is stable. Relevant tools for Boolean networks analysis in systems biology are 121

GINsim [49–51], BoolNet [52] and BNS [53, 54]. Qualitative networks, introduced recently 122

in [55], extend the Boolean network, allowing its elements to assume a finite number of possible 123

values. This feature provides biologists with more flexibility than just Boolean values and 124

enhances the variety of behaviors that it is possible to model with this formalism. The tool for 125

modeling and analysis of qualitative networks is Bio Model Analyzer (BMA) [56]. 126

Statecharts 127

Another natural way to model the dynamics of a biological system is to specify the sequence of 128

the states characterizing its behavior [23]. For example, when a phosphate group is added to 129

some proteins, their functional behavior can change to a phosphorylated state, enabling other 130

potential protein-protein interactions. A system remains in a state until the occurrence of some 131

event (e.g., the activation or inhibition of a gene) moves its internal behavior from one state to 132

PLOS 4/24

another. This characteristic makes a biological system a multi-scale reactive system, where 133

event-driven concurrent interactions, occurring at different levels (molecular, cellular, tissue, 134

organ, or population level) or between levels and with different timing and order, determine its 135

emergent behavior. The statecharts notation (see Fig. 1: 2nd row, 2nd column) is then a suitable 136

formalism to present, in a graphical representation, the interdependence among the states of a 137

reactive system. Several slightly different versions of these state diagrams have been proposed 138

with different semantics. 139

The statecharts introduced by Harel [57] have been the most popular among biologists, 140

because they offer appropriate constructs (hierarchy of states with transitions, events, and 141

conditions, orthogonal regions, etc.) to handle the complexity of modeling biological systems. 142

The classic statecharts notation, in fact, would require one to specify any possible combination 143

of parameters as a distinct state, leading to an explosion of the number of states. Among the 144

tools for statecharts, the most relevant in systems biology is IBM Rational Rhapsody [58, 59]. 145

Hybrid Systems 146

Hybrid systems [60] (see Fig. 1: 2nd row, 3rd column) extend the state-based discrete 147

representation previously mentioned with a continuous dynamics (generally Ordinary 148

Differential Equations, or ODEs) in each state (or mode). Hybrid modeling techniques [24] are 149

gaining more and more attention in systems biology [61], for their ability to capture the behavior 150

of biological systems that exhibit clear switching characteristics. In particular, sigmoidal 151

switches occur everywhere in biological models: molecular (an example is the sigmoidal 152

behavior exhibited by Hill-type kinetics), cellular, tissue, organ, and population models. Hybrid 153

modeling is generally suitable to combine qualitative (given by the discrete state) and 154

quantitative (given by the continuous dynamics) information [62]. In the last decade, several 155

hybrid system identification (hybridization) methods have been proposed in the 156

literature [63–66] to approximate complex non-linear dynamics with piecewise-linear [67, 68] or 157

piecewise-multi-affine functions [66, 69–71], making such models amenable to formal 158

analysis [60, 66–71] and improving large scale simulation of multi-cellular ensembles [72–74]. 159

It is noteworthy that widely used mathematical platforms, such as Matlab [75] and 160

Simulink [76, 77], enable the user to model and simulate hybrid systems. Other relevant tools 161

for hybrid systems modeling in biology are Rovergene [71], BioDivine [69, 78, 79], 162

Breach [80, 81], dReach [82, 83], and S-TaLiRo [84]. 163

Spatio-temporal Models 164

Continuous state deterministic spatiotemporal systems (see Fig. 1: 3rd row) are generally 165

formulated in terms of reaction-diffusion systems taking the form of semi-linear parabolic 166

partial differential equations (PDE). In the discrete state setting, compartment-based models (i.e., 167

membrane computing), agent-based models, and lattice-based computational models (i.e., 168

cellular automata, cellular Potts) have been employed to simulate the collective behavior of 169

cellular structures. All of these models display a wide range of behaviors emerging from local 170

and non-local interactions, such as traveling waves (i.e., cardiac tissue) [85], Turing 171

patterning [86, 87], and spirals [88, 89]. 172

Compartment-based Models 173

Biological systems are generally organized in compartments (i.e., cell membrane, cell nucleus, 174

organelle), exchanging molecules between them according to certain rules. Compartment-based 175

models (see Fig. 1: 3rd row, 1st column) are specialized to capture several biological 176

characteristics, such as the dynamic rearrangements of the compartments (a typical behavior 177

observed in the mitochondria) and the transport of molecules between them. 178

PLOS 5/24

The study of the membranes separating the compartments has also initiated a new area 179

within computer science called membrane computing, which aims to discover new bio-inspired 180

computational paradigms, such as the P Systems [90]. However, these models are more suitable 181

for the theory of computation than for modeling in systems biology. 182

Another relevant modeling framework is BioAmbients [91], a process algebra enriched with 183

special operators able to specify merging, splitting, and communication between compartments. 184

BAM [92, 93] is a tool for executing stochastic BioAmbients. BioAmbients evolved into Brane 185

Calculus [94], which offers a specially designed language to describe the dynamic behavior of 186

membranes. Whereas, in BioAmbients, the ambient (i.e., compartment) plays an active role 187

dictating which processes may enter or exit from it, Brane Calculus offers a different 188

perspective, in which the membranes have the control and play the role of coordinators. To the 189

best of our knowledge, there is not yet an implementation available for it. 190

Agent-based Models 191

Agent-based models [95, 96] (see Fig. 1: 3rd row, 2nd column) consider a collection of 192

autonomous decision-making entities, called agents, which individually sense the environment 193

and make decisions on the basis of a set of rules. Although, at the simplest level, an agent-based 194

model consists of a system of agents and the relationships between them, it can still exhibit 195

complex behavior patterns in terms of changes and adaptation in response to environmental 196

challenges or to neighboring agent behaviors (for example competition or collaboration). 197

Because all individuals in a population are explicitly represented, they can have unique 198

histories and behaviors. More complex agent-based models sometimes incorporate sophisticated 199

learning and adaptation rules based on neural networks, evolutionary algorithms, or other 200

techniques. The single-cell-based models represent one of the most promising aspects, in which 201

agents have many cellular functional and structural features and behavior, inching toward reality 202

and enabling the detection of phenomena at different intermediate scales of biosystems. 203

Cell-based models can express important behavioral characteristics of a cell, such as the 204

dynamics of its replication and information on each stage of its development (i.e., cell geometry, 205

size, and mechanical properties). 206

A single-cell-based model should be able to understand how stage-dependent cell-cell 207

interactions at microscopic scale will lead to cell-tissue interactions and stage heterogeneity at 208

mesoscopic level and mechanical properties of the tissue at macroscopic level. Models could be 209

implemented using FLAME [27, 97] and REPAST [28, 98], for example. 210

Lattice-based Models 211

A lattice (see Fig. 1: 3rd row, 3rd column), which defines a regular repeated graph, formed by 212

identical n-dimensional closed grid sites and characterized by periodic or fixed boundary 213

conditions in each direction, is particularly suited for systems description of interconnected 214

processes at the molecular, cellular, and the tissue/organ level. These natural levels can 215

approximately be connected to a microscopic (molecule motion and interactions), mesoscopic 216

(cell division and motion, cell-cell interactions, cell-matrix), and macroscopic scale (tissue and 217

organ mechanical properties), respectively. 218

Cellular automata [99] are discrete dynamic systems – discrete in space, time, and state. 219

Cellular pattern formation can be seen as arising from short-range (such as adhesive forces and 220

cell-cell signaling) and long-range interactions (such as mechanical stress fields or diffusing 221

chemicals). A Bethe lattice [100] (or Cayley tree) is a hierarchically ordered, cycle-free network 222

without ends and has been applied to immunological (idiotypic) networks. 223

In multi-scale lattice-based models, we can observe what happens at almost all scales, from 224

the whole organism down to the molecular level; however, putting things together in order to 225

obtain real understanding is much more difficult and involves scaling up and homogenization of 226

models across multiple spatial scales and related asymptotic techniques for the analysis of 227

PLOS 6/24

multiple time scales. This problem could be overcome by using energetic considerations, such as 228

in the cellular Potts model (also termed the Glazier Graner-Hogeweg model), which are based 229

on the stochastic Monte Carlo method on a regular lattice [101, 102]. The objects, either discrete 230

generalized cells (unicellular organisms, clusters of cells, individual cells) or continuous fields 231

(such as gradients of nutrients or small molecules), are associated with an energy description of 232

processes such as cell-cell adhesion or cell-nutrient interaction. Lattice rearrangements, which 233

simulate the evolution of the system, are driven by the energy minimization of a Hamiltonian 234

function. 235

A very general and flexible framework for Potts model development is 236

CompuCell3D [103, 104], which has been used to model a variety of anatomical and 237

pathological conditions at cell, tissue, and organ levels. This framework succeeds in combining 238

both a rigorous energetic and mechanical treatment of the process with an intuitive and 239

insightful biological description. There is growing interest in network ensembles approaches. 240

Multilayer networks and, in particular, multiplex networks (in which different networks share 241

the same nodes) could be analyzed using network entropies to evaluate and quantify the 242

correlations between interdependent networks. For example, in biological systems, gene, protein, 243

and metabolite networks have strong correlations and interdependencies that cannot be fully 244

pictured in terms of single graphs [105]. 245

Formal Analysis 246

The modeling languages presented in the previous section play a key role in supporting the 247

rigorous specification of the mechanisms observed experimentally, helping scientists in the 248

formulation of new hypotheses. Once a model is constructed, a suitable tool can parse the syntax 249

of its specification and interpret it according to the semantics of the chosen modeling language. 250

A model can also undergo a process of compilation that automatically translates it into a 251

computer program simulating the biological process under investigation. The generated program 252

can be used to predict the emergent behavior of a system with certain initial conditions. This 253

contributes to the testing procedure and to reducing the number of costly experiments, 254

concentrating all efforts and resources only on those that promise to reveal novel interesting 255

mechanisms. 256

Another advantage is the possibility of inheriting several methods and tools that are 257

commonly developed and employed within the computer-aided verification community to 258

formally check the correctness of a program’s behavior. In the context of systems biology, these 259

methods are becoming very useful for reasoning and analyzing models, validating new 260

experimental results, automatically checking behaviors of interest, and identifying the inputs or 261

parameters of the system enforcing a desired behavior. 262

The formal verification of a program consists in proving that its execution satisfies a given 263

specification of the possible behaviors it should display. In the following, we will first present 264

some logic-based languages used to specify temporal behavioral properties rigorously and 265

concisely. 266

These languages, first developed within computer science, are now also employed in several 267

case studies of systems biology to model recurrent patterns in biological signals or simply the 268

order of relevant biological events. We will then discuss three well-established formal 269

verification techniques designed first to verify programs and now widely employed to analyze 270

biological models: model checking [6, 70, 71, 106–110], runtime verification [80, 111–116], and 271

static analysis [93, 117–119]. 272

Temporal Logics 273

Temporal logics [120–123] are very concise languages to rigorously specify the occurrence of 274

specific temporal behaviors. One of the most popular temporal logics is Linear Temporal Logic 275

PLOS 7/24

!"#$%&!'($)*'+',*&-".$.#'&/"0('*1*.(-2'",3*,' ,*&!4($)*'+',*&-".$.#'&/"0('-$#.&!-'
!56789'(7:;<98='!<>5?'-@6A8BC'

! := T | xi " 0 | ¬! |!1 #!2 |!1U a ,b$% &'

!2

!"#$%&!''
"D*,&(",-'

(*)D",&!''
"D*,&(",-'

0.($!'.*E('&.3'."('/&-$%'D,"DF'

(,0*'

)&$.'3*,$1*3'"D*,&(",-C'

!! = T U !
1.(0&!!GHI$.&!!G'

!! = ¬!¬!
#!"/&!!GH&!J&G-'

",'

 !1 "!2 = ¬!1 #!2

$)D!$%&($".'

-*)&.($%-C'
 !1 "!2 = ¬ ¬!1 # ¬!2()

AK' AL' AM' AN' !"AO'
!a

889P5A989@'

 a U b

89P5A989@' 89P5A989@' 89P5A989@'

AK' AL' AM' AN' !"AO'

89P5A989@'8 8 8 P

AK' AL' AM' AN' !"AO'

89P5A989@'889P5A989@' 89P5A989@' 89P5A989@'
!a

AK' AL' AM' AN' !"AO'

8 8888
 !a

-5>68='(7:;<98='!<>5?'-@6A8BC'

| ! |!1 !2 | 1 a ,b$%$%$%$%$% '&'&'&'&' 2

!"#$%&!''
"D*,&(",-'

(*)D",&!''
"D*,&(",-'

0 | || U|

0.($!'

T ||

-$#.&!'(,0*'

 ! := T | p | ¬! |!1 "!2 |!! |!1U!2

."(' &.3'

)&$.'3*,$1*3'"D*,&(",-C'

! a ,b"# $%

& = T U a ,b"# $%
 &

1.(0&!!GHI$.&!!G'

! a ,b!" #$

% = ¬& a ,b!" #$
¬%

#!"/&!!GH&!J&G-'

",'

 !1 "!2 = ¬!1 #!2

$)D!$%&($".'

 !1 "!2 = ¬ ¬!1 # ¬!2()

UU

 0 ! a < b

-*)&.($%-C'

K' L' M' N' Q' R' S' T' U' V' LK' LL'
A'

L'
M'
N'
Q'
R'

x1 ! 1()U 2,6!" #$
x1 ! 2.5()

Q'Q' R'R' S'S'

x1 ! 2.5()

 x1 ! 1() Signal x1

K' L' M' N' Q' R' S' T' U' V' LK' LL'
A'

L'
M'
N'
Q'
R'

 Signal x1

K' L' M' N' Q'Q'
D,"D*,(G'1$"!&(*3'

D,"D*,(G'-&($-I$*3' D,"D*,(G''
$.3*D*.3*.('

D,"D*,(G'1$"!&(*3'

! 0,+!"# $%

x1 & 2()

K' L' M' N' Q' R' S' T' U' V' LK' LL'
A'

L'
M'
N'
Q'
R'

 Signal x1D,"D*,(G'-&($-I$*3'

! 0,+"#$ %&

x1 ' 3.5()

D,"D*,(G''
$.3*D*.3*.('

W?X'

WYX'

W7X'

WZX'

D,"D*,(G'1$"!&(*3'

D,"D*,(G'-&($-I$*3'D,"D*,(G'-&($-I$*3'D,"D*,(G'-&($-I$*3'

D,"D*,(G'-&($-I$*3'D,"D*,(G'-&($-I$*3'

D,"D*,(G''D,"D*,(G''
$.3*D*.3*.('$.3*D*.3*.('$.3*D*.3*.('

W8X'

WPX'

W>X'

W[X'

W5X'

W\X'

W]X'

Figure 2. Examples of temporal logics. Comparison between the main features of the LTL
(left) and STL (right) in terms of syntax (top), operators (middle) and semantics (bottom); the
black circles represents a propositional state, and the arrows represent the next step in time.

(LTL), introduced by Pnueli in 1977 [120] to reason about the order of events occurring during 276

the execution of a program. The LTL syntax is given by the grammar shown in Fig. 2-a. The 277

basic proposition p indicates a Boolean value that may express the relationship between a state 278

variable of the system and a value for a particular time instant. For example, we can specify that 279

the concentration of the specie x1 is greater than or equal to a certain threshold r (x1 ≥ r) or 280

that a specific biological event e (e.g., phosphorylation) should occur. More complex logical 281

formulas can be obtained by combining propositions using logical operators such as or (∨) and 282

not (¬). The other classical logical operators such as and (∧) and implication (→) can be 283

derived by combining the previous two, as shown in Fig. 2-b. 284

The LTL syntax includes also two temporal operators: the next (©) operator, which means 285

that a formula ϕ should hold in the next step (see Fig. 2-c), and the until (U) operator, which 286

requires a formula ϕ1 to hold until a formula ϕ2 becomes true (see Fig. 2-d). 287

From the until operator, it is possible to derive other very suitable temporal operators: the 288

eventually (�) operator specifies that a formula ϕ will finally become true at some point (see 289

Fig. 2-e), and the always (�) operator states that a formula ϕ should remain true forever (see 290

Fig. 2-f). The combination and the nesting of the basic propositions with the logical and 291

temporal operators allow the specification of several different types of temporal behaviors. 292

The most common temporal patterns are: 293

1. reachability properties, where an event will finally happen. For example, we can express 294

the property ”the event of protein A production (event A↑) will finally occur” with the 295

LTL formula ϕ = �A↑. This specification does not guarantee that the same event will 296

PLOS 8/24

happen again after it has occurred; 297

2. liveness properties, where an event will always finally happen. This specification 298

guarantees that the same event will happen again also after it has occurred. For example, 299

the property ”always the event of the degradation of protein A (event A↓) implies 300

eventually the activation of gene B (event B↑)” [124] can be specified with the LTL 301

formula ϕ = �(A↓ → �B↑); 302

3. safety/invariant properties, where a system will always satisfy a certain requirement. For 303

example, the property ”the number of the osteoclasts, the cells degrading/digesting the 304

bone matrix, xoc during bone remodeling will be always less than a particular 305

concentration c” [107] can be specified with a LTL formula ϕ = �p with p = (xoc ≤ c); 306

4. stability properties, special cases of liveness properties, where eventually an invariant 307

property will hold. For example, the property ”finally the skin cell proliferation xc will 308

reach a stable level l” [125] can be expressed with the LTL formula ϕ = ��p with 309

p = |xc − l| ≤ ε; 310

5. oscillatory properties. For example, the property ”the concentration of a protein xp is 311

oscillating between two levels ta, tb with ta < tb” can be written as the LTL formula 312

ϕ = �((p1 → �p2) ∧ (p2 → �p1)), with p1 = xp ≤ ta and p2 = xp ≥ tb. 313

LTL operates on a single path of the model execution, and a temporal property can be 314

formulated only for one possible trajectory of the system. Other temporal logics such as 315

computational tree logic (CTL) [126] and CTL* [127] have in their syntax special quantifiers 316

that enable the specification of properties over all the possible trajectories or branches in time: 317

universal quantifier (∀) specifies that a nested formula should be true for all the possible 318

trajectories, while the existential quantifier (∃) requires the formula to hold in at least one of the 319

possible trajectories. 320

All the aforementioned temporal logics consider only the temporal order of the events and 321

not the actual time at which they really occur. For example, it is not possible to specify that a 322

formula should hold after two units of time and before three and a half units of time. Even if we 323

decide to discretize the time, recording all the events at each time step, the syntax of these logics 324

is not equipped to deal directly with the specification of real-time intervals. 325

Real-time temporal logics [128–131] overcome these limits by using a continuous time 326

semantics and embedding a time interval in the until temporal operator. 327

The Signal Temporal Logic (STL) [131, 132] is an example of a real-time temporal logic 328

suitable for many biological case studies [115, 116, 133–135]. STL extends LTL with the 329

continuous time semantics and with predicates over real variables (see Fig. 2-g and Fig. 2-h). 330

Fig. 2-i shows how the until operator of the STL syntax is enriched with the possibility of 331

specifying a continuous time interval [a, b] within which the first formula ϕ1 should hold until 332

ϕ2 holds. STL operates on a continuous piecewise representation of a sampled signal. As 333

illustrated in Fig. 2-j and Fig. 2-k, the STL semantics uses interpolation to determine the point 334

between two samples where the formula will start to hold or to be violated. 335

STL has two possible semantics: a qualitative semantics returning a yes/no answer to the 336

question whether the system satisfies or violates the specification, and a quantitative semantics 337

providing also a measure of robustness [111, 113] of how much the system violates or satisfies 338

the specification. Negative robustness implies property violation, while positive robustness 339

implies property satisfaction. As we discuss later in this section, this value can be used to guide 340

the parameter synthesis of a biological model with unknown parameters. 341

PLOS 9/24

Model Checking 342

Model checking is an automatic formal verification technique able to check the emergence of a 343

particular behavior in a biological model. This technique operates over a discrete time model 344

with a finite number of states, called a Kripke structure [136], where the execution of a model 345

triggers a sequence of events determining the truth value of the propositions of a temporal logic 346

formula. A Kripke structure is a special labeled graph in which the nodes represent the reachable 347

states generated by executing the biological model, and the edges represent the state transitions. 348

A labeling function maps each node to the set of propositions that hold in the corresponding 349

reachable state. A transition relation specifies the set of possible successors for each state. 350

Each node always has a successor or a loop transition starting and ending in the same state, 351

representing non-terminating computations where the evaluation of the atomic propositions does 352

not change (also called fixed point). Suitable user-friendly tools can translate the biological 353

models specified with one of the formalisms presented in the previous section into a Kripke 354

structure representation that can be analyzed with very efficient model checkers such as 355

NuSMV [137, 138] or CADP [139]. The main drawback of this technique is that the number of 356

states of a model usually grows exponentially in the number of its parameters, giving rise to the 357

state explosion problem. In order to tackle this, the majority of model checkers do not explicitly 358

represent the states, but represent sets of states symbolically [140, 141]. For example, the states 359

and the transition relation of a Kripke structure can be encoded as a binary decision diagram 360

(BDD) [140], a very compact acyclic graph data structure used to represent a Boolean function 361

and in general also sets or relations. The logical operations required by model checking are then 362

interpreted as operations over sets and implemented by polynomial-time graph manipulation 363

algorithms [140] directly on this representation of sets. The works of Bryant [140] on BDDs and 364

of McMillan [141] on symbolic model checking provide more details on the symbolic approach. 365

Model checking techniques have been then extended also to many other computational 366

models that can be regarded as Kripke structures, such as continuous- and discrete-time Markov 367

chains (CTMC and DTMC) [6] (by adding probabilities), Petri nets [41], hybrid systems [142] 368

(by adding continuous dynamics), and spatial lattice-based models (using the quad-tree 369

representation) [88]. In the case of CTMC and DTMC, the analysis may benefit from using 370

probabilistic model checkers such as PRISM [6, 143, 144], which provide a real number in the 371

interval of [0,1] corresponding to the probability that the system model will satisfy the property 372

of interest. The algorithm used to calculate this probability can return either the exact 373

solution [123], if it operates directly on the structure of the Markov chains, or an approximated 374

solution, when it measures statistically [145] the probability of satisfying a property for a set of 375

samples, generated using a Monte Carlo simulation of the system model. This statistical 376

approach can be applied not only to the classical DTMC and CTMC models, but also to 377

stochastic hybrid systems [146], where the continuous dynamics are calculated by integration 378

and the discrete transitions are chosen non-deterministically, by following a probability 379

distribution. 380

Runtime Verification/Monitoring 381

Another way to overcome the state explosion problem of model checking is to focus the analysis 382

on a single execution trace instead of performing an exhaustive verification. Runtime 383

verification is a lightweight yet powerful verification technique that aims to check whether the 384

current execution of a program (i.e., the time series of the concentration of the protein expression 385

during a gene regulatory network simulation) satisfies or violates a property of interest. 386

The emergent property is still specified in terms of a LTL formula or one of its extensions, 387

but in this case only a single behavior is evaluated. Monitoring does not require a system model, 388

but only a set of observable, discrete, or continuous signals that can be collected during a 389

wet-lab experiment or generated by numerical simulation. As previously mentioned, in the last 390

decade LTL has been extended to specify properties of real-valued variables defined over dense 391

PLOS 10/24

real time. A pioneering example of LTL with predicates expressed in terms of constraints over 392

reals is LTL(R), presented in [147, 148], and then implemented to monitor numerical 393

simulations of biological models in BIOCHAM [108]. 394

Also, STL [131] extends LTL with a continuous time semantics and with predicates over real 395

variables, and it is implemented in the Breach [80] and S-TaLiRo [84, 149] tools. In these tools, 396

the evaluation of the STL formula robustness for a particular trajectory through monitoring is 397

used in combination with sensitivity-based analysis techniques [107, 114, 115, 135] or 398

stochastic-based optimization techniques [116, 149] to steer the simulation of a biological model 399

toward the parameter regions in which it would display the property of interest. 400

Static Analysis 401

As the term “static” indicates, this analysis is performed on the static description of the model 402

without actually executing it. The principles of static analysis originated in the field of compiler 403

optimization. Nowadays, this approach is widely employed in software verification, its key role 404

being to detect potentially vulnerable code in safety-critical applications. 405

While model checking generally needs to explore all the states originated by executing the 406

semantics of the model, static analysis operates on the syntactic level of the specification or by 407

using abstract interpretation [150] over finite approximations of the possible model 408

executions [151]. Static analysis can reveal important information regarding the model 409

specification (e.g., the control structure, the flow of species concentrations, the interactions 410

among species), without performing all of the underlying concrete calculations. In the last 411

decade [117], static analysis has become a useful technique to analyze biological models 412

also [93, 118, 119]. In [93], the authors successfully employ this technique to analyze biological 413

pathways. Given a formal model in BioAmbients of the LDL degradation pathway, the authors 414

compute a fine over-approximation of the possibly infinite reaction sequences that the model 415

specifies. This approximation is safe, meaning that all the reaction sequences that do not appear 416

in the analysis are not possible. 417

Static analysis is crucial to deal with the complexity of real systems (see also [118, 119] for 418

other important examples in systems biology), where model checking all the reaction sequences 419

will fail, owing to the state explosion problem. However, it is not as precise as executing the 420

model: it is not possible to guarantee that all the reachable states in the over-approximation are 421

also reachable in the original model’s behavior. 422

In some cases (see, for example, the Rovergene tool [71]), static analysis and model 423

checking techniques are combined. The first constructs an abstract domain using suitable 424

abstractions. The second provides a logical framework to search in the abstract domain if a set 425

of states is not reachable. This guarantees that they will never occur in the original model’s 426

behavior. Examples of this analytic approach can be found in several case studies: genetic 427

networks [71], loss of cardiac cell excitability [66], and bone remodeling [107]. Static analysis 428

has also been used in [152] to relate different semantics and formalisms used for describing 429

reaction systems. 430

Tools 431

We now use the concepts previously discussed as a guide to choosing among the several tools 432

available. 433

Fig. 3 and Table 1, though not purporting to be complete, present a selection of software 434

closely related to the topics discussed in this review. In Fig. 3 we classify the listed tools by the 435

computational modeling language, the supported semantics of execution, and the formal analysis 436

that can be performed, based on the literature. We also specify if the tool supports a mechanism 437

to tune the model’s parameters, guided by the formal analysis. 438

PLOS 11/24

Figure 3. Summary of the features for the selected tools. Tools are classified by the
supported computational modeling language, their execution semantics, and the formal analysis
that can be performed, based on the literature.

While each modeling language was developed to solve a real problem, different modeling 439

languages may map into the same program. Knowledge of the syntax is needed in order to carry 440

out static analysis. The executable program, on the other hand, is no longer syntax dependent. 441

Quantitative analysis (i.e., simulation), which considers the time dimension, is then performed 442

on the output produced by the program. 443

In the second column of Table 1 (Main case studies), references to some applications are 444

presented. The large variety of tools will accommodate the current rich interdisciplinary and 445

multidisciplinary systems biology scenarios. Scientists with different backgrounds may have 446

different initial preferences and later move in various directions, generating the conditions for 447

extensive exchange of ideas and methodological innovations. 448

Conclusions and Vision 449

The growing availability of large amounts of data (i.e., BigData) will allow models to be tested 450

very finely. Spatial data could be collected in three dimensions (thanks, perhaps, to microscope 451

imaging advances), capturing the formation of patterns, niches, molecular associations, and 452

PLOS 12/24

Table 1. Summary of the main case studies in systems biology for the listed tools.
Tool Main case studies
BAM [92] LDL Degradation Pathway [93]
BETAWB [12] The MAPK biochemical pathway [12], Cell-Cycle [11]
BIOCHAM [30] Mammalian Cell Cycle Control [34], G protein-coupled receptor kinases [31]
BIODIVINE [69, 78] Genetic Regulatory Networks [79]
BIONETGEN [22] + BIOLAB [33] HMGB1 signal pathway [35],

Analysis of T-Cell Receptor Signaling Pathway [33]
BIO-PEPA WB [13] Plant circadian clock [14]
BOOLNET [52] Genetic Networks [52]
BMA [56] Biological Signaling Networks [55]
BNS [53] Cell Cycle Sequence of Fission Yeast [54]
BREACH [80] Collagen proteolysis [115], Cellular Iron Homeostasis Network [81]
COMPUCELL3D [103] Vertebrate Segmentation and Somite Formation [104]
COPASI [8] Biochemical Networks [9]
dREACH [82] Cardiac Cell Hybrid Models [83]
FLAME [27] Sperm behaviour [97]
GINSIM [49] Diversity and plasticity of Th cell types [50],

MAPK network on cancer cell fate decision [51]
GREATSPN [43] Signal Transduction Pathways for Angiogenesis [44]
IBM RATIONAL RHAPSODY [58] T-cell activation with statecharts [59]
KASIM [32] EGFR signaling [36]
MATHWORKS SIMULINK [76] Heart model for pacemaker verification [77]
PATHWAY LOGIC [45] Sporulation Initiation in B.Subtilis [46],

MAPK Signaling Network [46],
EGF Stimulation Network [45]

PRISM [6] Biological Signaling Pathways [6, 143, 144], Bone pathologies [107]
ROVERGENE [71] Synthetic transcr. cascade [71], Myocyte excitability [66], Bone Remodeling [107]
SNOOPY [26] + MARCIE [42] Systems and Synthetic Biology [41]
SPIM [15] Modeling of the EGFR network [16], MHC class I peptide optimization [17]
S-TALIRO [84] Modeling of the Insulin-Glucose Regulatory System [149]
REPAST [28] Bone Remodeling [98]

multi-scale features. The time dimension could range from molecular events (for example DNA 453

mutations or epigenetic changes) to organism development, circadian, species evolution, and 454

other meaningful periodicities. 455

The development of new efficient tools will motivate others to generate new computational 456

models or to improve the existing ones. This will increase the community of scientists sharing 457

their knowledge through standardized computational models reproducing numerically the 458

behavior of the biological process under investigation. With computational modeling acquiring 459

better capacity to describe biological systems and processes at a level useful for prediction and to 460

suggest experiments, it will trigger a useful feed-forward process with experimental biologists. 461

The tools described in this paper can already accommodate different complexly structured 462

properties of biological processes and could be used separately or in different combinations and 463

architectures. This will enable biologists to answer complex questions. For example, temporal 464

logics, in particular, will have a profound impact in systems biology by helping to transform 465

cause-effect relationships into objects that can be manipulated both mathematically and 466

computationally. In epistatic control, temporal logics can be used to model two or more causal 467

factors as interacting mechanistically with respect to the observed phenomenon. Doing so will 468

establish powerful connections, with reasoning based on logic and statistics and the mechanisms 469

PLOS 13/24

and processes that underlie the observed behavior. 470

One future interesting research direction that we envision is the extension of the current 471

formal analysis techniques and temporal logics to the spatial domain. For example, 472

understanding how a spatial pattern emerges from the biochemical level acting at the cellular 473

level (i.e., morphogenesis in developmental biology) is currently very challenging, because of 474

both the high computational complexity required by the spatio-temporal modeling and the lack 475

of a suitable specification language to specify the spatio-temporal patterns of 476

interest [86, 87, 153]. 477

Furthermore, the rapid progress of modern technologies for healthcare has led to a new 478

generation of devices called medical cyber-physical systems [154], in which smart and 479

collaborative computational elements control the biological systems. Examples include 480

pacemakers, biocompatible and implantable devices, insulin pumps, electro-anatomical mapping 481

and intervention, robotic prosthetics, and neurostimulators. Here, the computational modeling of 482

the biological part is indispensable to the development of efficient and safe controlling devices. 483

Furthermore, the successful application of formal analysis techniques and tools to verify the 484

correct and safe behavior of these systems will have an economic impact on our society by 485

reducing warranty, liability, and certification costs. We believe that the concepts and the 486

computational tools described here represent core elements of computational description, 487

particularly in the framework of systems biology, and will have some relevance to both 488

newcomers and experts. 489

References 490

1. Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol. 2007 491

Nov;25(11):1239–1249. 492

2. Hunt CH, Ropella GEP, Park S, Engelberg J. Dichotomies between computational and 493

mathematical models. Nature Biotechnology. 2008;26(7):737–738. 494

3. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W. Rules for 495

Modeling Signal-Transduction Systems. Sci STKE. 2006;2006(344):re6. 496

4. Fisher J, Harel D, Henzinger TA. Biology As Reactivity. Commun ACM. 2011 497

Oct;54(10):72–82. 498

5. Fisher J, Piterman N. The executable pathway to biological networks. Brief Funct 499

Genomics. 2010 Jan;9(1):79–92. 500

6. Kwiatkowska M, Norman G, Parker D. Probabilistic Model Checking for Systems 501

Biology. In: Symbolic Systems Biology. Jones and Bartlett; 2010. p. 31–59. 502

7. Gay S, Soliman S, Fages F. A graphical method for reducing and relating models in 503

systems biology. Bioinformatics. 2010;26(18). 504

8. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI–a COmplex 505

PAthway SImulator. Bioinformatics. 2006 Dec;22(24):3067–3074. 506

9. Sahle S, Gauges R, Pahle J, Simus N, Kummer U, Hoops S, et al. Simulation of 507

Biochemical Networks using Copasi - A Complex Pathway Simulator. In: Proc. of 508

WSC 06: the Winter Simulation Conference. IEEE; 2006. p. 1698–1706. 509

10. Priami C, Regev A, Shapiro E, Silverman W. Application of a stochastic name-passing 510

calculus to representation and simulation of molecular processes. Information 511

Processing Letters. 2001;80(1):25–31. 512

PLOS 14/24

11. Dematté L, Priami C, Romanel A. The BlenX Language: A Tutorial. In: Formal 513

Methods for Computational Systems Biology 2008: 8th International School on Formal 514

Methods for the Design of Computer, Communication, and Software Systems. vol. 5016 515

of LNCS. Springer-Verlag; 2008. p. 313–365. 516

12. Dematté L, Priami C, Romanel A. The Beta Workbench: a computational tool to study 517

the dynamics of biological systems. Brief Bioinform. 2008;9(5):437–449. 518

13. Ciocchetta F, Hillston J. Bio-PEPA: A framework for the modelling and analysis of 519

biological systems. Theoretical Computer Science. 2009;410(33–34):3065–3084. 520

14. Guerriero ML, Pokhilko A, Fernandez AP, Halliday KJ, Millar AJ, Hillston J. Stochastic 521

properties of the plant circadian clock. J R Soc Interface. 2012 Apr;9(69):744–756. 522

15. Phillips A, Cardelli L. Efficient, Correct Simulation of Biological Processes in the 523

Stochastic Pi-calculus. In: Proc. of CMSB 2007: The 6th Conference on Computational 524

Methods in Systems Biology. vol. 4695 of LNCS. Springer; 2007. p. 184–199. 525

16. Wang DY, Cardelli L, Phillips A, Piterman N, Fisher J. Computational modeling of the 526

EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst 527

Biol. 2009;3:118. 528

17. Dalchau N, Phillips A, Goldstein LD, Howarth M, Cardelli L, Emmott S, et al. A 529

peptide filtering relation quantifies MHC class I peptide optimization. PLoS Comput 530

Biol. 2011 Oct;7(10):e1002144. 531

18. Bortolussi L, Policriti A. Modeling Biological Systems in Stochastic Concurrent 532

Constraint Programming. Constraints. 2008;13(1-2):66–90. 533

19. Bartocci E, Corradini F, Di Berardini MR, Merelli E, Tesei L. Shape Calculus. A Spatial 534

Mobile Calculus for 3D Shapes. Scientific Annals of Computer Science. 535

2010;20(1):2010. 536

20. Bartocci E, Cacciagrano DR, Di Berardini MR, Merelli E, Tesei L. Timed Operational 537

Semantics and Well-Formedness of Shape Calculus. Scientific Annals of Computer 538

Science. 2010;20(33):2010. 539

21. Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E. BioAmbients: an abstraction 540

for biological compartments. Theoretical Computer Science. 2004;325(1):141 – 167. 541

22. Faeder JR, Blinov ML, Hlavacek WS. Rule-Based Modeling of Biochemical Systems 542

with BioNetGen. Methods in Molecular Biology. 2009;500:113–167. 543

23. Fisher J, Harel D. On Statecharts for Biology. In: Symbolic Systems Biology: Theory 544

and Methods. Jones & Bartlett Publishers; 2010. . 545

24. Bortolussi L, Policriti A. Hybrid Systems and Biology. In: Formal Methods for 546

Computational Systems Biology. vol. 5016 of LNCS. Springer; 2008. p. 424–448. 547

25. Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. J 548

Theor Biology. 1969 Mar;22:437–467. 549

26. Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. Snoopy - A Unifying Petri Net Tool. 550

In: Proc. of Petri Nets 2012: the 33rd International Conference on Application and 551

Theory of Petri Nets. vol. 7347 of LNCS. Springer; 2012. p. 398–407. 552

27. Richmond P, Walker DC, Coakley S, Romano DM. High performance cellular level 553

agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics. 554

2010;11(3):334–347. 555

PLOS 15/24

28. North MJ, Collier NT, Vos JR. Experiences creating three implementations of the 556

REPAST agent modeling toolkit. ACM Trans Model Comput Simul. 2006 557

Jan;16(1):1–25. 558

29. John M, Lhoussaine C, Niehren J, Versari C. Biochemical Reaction Rules with 559

Constraints. In: Proc. of ESOP 2011: the 20th European Symposium on Programming. 560

vol. 6602 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2011. p. 561

338–357. 562

30. Chabrier-Rivier N, Fages F, Soliman S. The Biochemical Abstract Machine BIOCHAM. 563

In: Proc. of CMSB 2005: the 3rd International Conference on Computational Methods 564

in Systems Biology. vol. 3082 of LNCS. Springer; 2005. p. 172–191. 565

31. Heitzler D, Durand G, Gallay N, Rizk A, Ahn S, Kim J, et al. Competing G 566

protein-coupled receptor kinases balance G protein and β-arrestin signaling. Mol Syst 567

Biol. 2012;8:590. 568

32. Danos V, Feret J, Fontana W, Harmer R, Krivine J. Rule-Based Modelling of Cellular 569

Signalling. In: Proc. of CONCUR 2007: 18th International Conference on Concurrency 570

Theory. vol. 4703 of LNCS. Springer Berlin Heidelberg; 2007. p. 17–41. 571

33. Clarke EM, Faeder JR, Langmead CJ, Harris LA, Jha SK, Legay A. Statistical Model 572

Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor 573

Signaling Pathway. In: Proc. of CMSB 2008: the 6th International Conference on 574

Computational Methods in Systems Biology. vol. 5307 of LNCS. Springer; 2008. p. 575

231–250. 576

34. Chabrier-Rivier N, Chiaverini M, Danos V, Fages F, Schächter V. Modeling and 577

querying biomolecular interaction networks. Theor Comput Sci. 2004;325(1):25–44. 578

35. Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM. Analysis and verification of 579

the HMGB1 signaling pathway. BMC Bioinformatics. 2010;11 Suppl 7:S10. 580

36. Feret J, Danos V, Krivine J, Harmer R, Fontana W. Internal coarse-graining of molecular 581

systems. Proceedings of the National Academy of Sciences. 2009;106(16):6453–6458. 582

37. Petri CA, Reisig W. Petri net. Scholarpedia. 2008;3(4):6477. 583

38. Cordero F, Horváth A, Manini D, Napione L, Pierro MD, Pavan S, et al. Simplification 584

of a complex signal transduction model using invariants and flow equivalent servers. 585

Theor Comput Sci. 2011;412(43):6036–6057. 586

39. Koch I, Junker BH, Heiner M. Application of Petri Net theory for modelling and 587

validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics. 588

2005;21(7):1219–1226. 589

40. Blätke MA, Heiner M, Marwan W. Predicting Phenotype from Genotype through 590

Automatically Composed Petri Nets. In: Proc. of CMSB 2012: the 10th International 591

Conference on Computational Methods in Systems Biology. vol. 7605 of LNCS; 2012. 592

p. 87–106. 593

41. Heiner M, Gilbert D, Donaldson R. Petri Nets for Systems and Synthetic Biology. In: 594

Formal Methods for Computational Systems Biology 2008: 8th International School on 595

Formal Methods for the Design of Computer, Communication, and Software Systems. 596

No. 5016 in Lecture Notes in Computer Science. Springer; 2008. p. 215–264. 597

PLOS 16/24

42. Heiner M, Rohr C, Schwarick M. MARCIE - Model Checking and Reachability 598

Analysis Done Efficiently. In: Application and Theory of Petri Nets and Concurrency. 599

vol. 7927 of LNCS. Springer Berlin Heidelberg; 2013. p. 389–399. 600

43. Baarir S, Beccuti M, Cerotti D, De Pierro M, Donatelli S, Franceschinis G. The 601

GreatSPN tool: recent enhancements. SIGMETRICS Perform Eval Rev. 602

2009;36(4):4–9. 603

44. Napione L, Manini D, Cordero F, Horváth A, Picco A, Pierro M, et al. On the Use of 604

Stochastic Petri Nets in the Analysis of Signal Transduction Pathways for Angiogenesis 605

Process. In: Proc. of CMSB 2009: the 7th Conference on Computational Methods in 606

Systems Biology. vol. 5688 of LNCS; 2009. p. 281–295. 607

45. Talcott C, Dill DL. The Pathway Logic Assistant. In: Proceedings of the Workshop 608

Computational Methods in Systems Biology (CMSB); 2005. p. 228–239. 609

46. Tiwari A, Talcott C, Knapp M, Lincoln P, Laderoute K. Analyzing Pathways using 610

SAT-based Approaches. In: Proc. of AB 2007: the 2nd Intl. Conf. on Algebraic Biology. 611

vol. 4545 of LNCS. Springer; 2007. p. 155–169. 612

47. Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. 613

II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos. 614

2001;11(1):180–195. 615

48. Thomas R, Kaufman M. Multistationarity, the basis of cell differentiation and memory. 616

I. Structural conditions of multistationarity and other nontrivial behavior. Chaos. 2001 617

Mar;11(1):170–179. 618

49. Chaouiya C, Naldi A, Thieffry D. Logical modelling of gene regulatory networks with 619

GINsim. Methods Mol Biol. 2012;804:463–479. 620

50. Naldi A, Carneiro J, Chaouiya C, Thieffry D. Diversity and plasticity of Th cell types 621

predicted from regulatory network modelling. PLoS Comput Biol. 2010;6(9):e1000912. 622

51. Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perles B, Thieffry D. 623

Integrative modelling of the influence of MAPK network on cancer cell fate decision. 624

PLoS Comput Biol. 2013 Oct;9(10):e1003286. 625

52. Mussel C, Hopfensitz M, Kestler HA. BoolNet–an R package for generation, 626

reconstruction and analysis of Boolean networks. Bioinformatics. 2010 627

May;26(10):1378–1380. 628

53. Dubrova E, Teslenko M. A SAT-Based Algorithm for Finding Attractors in 629

Synchronous Boolean Networks. IEEE/ACM Transactions on Computational Biology 630

and Bioinformatics. 2011;8(5):1393–1399. 631

54. Davidich MI, Bornholdt S. Boolean Network Model Predicts Cell Cycle Sequence of 632

Fission Yeast. PLoS ONE. 2008;3(2):e1672. 633

55. Schaub MA, Henzinger TA, Fisher J. Qualitative networks: a symbolic approach to 634

analyze biological signaling networks. BMC Syst Biol. 2007;1:4. 635

56. Benque D, Bourton S, Cockerton C, Cook B, Fisher J, Ishtiaq S, et al. BMA: Visual 636

Tool for Modeling and Analyzing Biological Networks. In: Proc. of CAV 2012: the 637

24th International Conference on Computer Aided Verification. vol. 7358 of LNCS. 638

Berlin, Heidelberg: Springer-Verlag; 2012. p. 686–692. 639

PLOS 17/24

57. Harel D. Statecharts: A Visual Formalism for Complex Systems. Sci Comput Program. 640

1987;8(3):231–274. 641

58. Harel D, Gery E. Executable object modeling with statecharts. Computer. 642

1997;30(7):31–42. 643

59. Kam N, Cohen IR, Harel D. The Immune System as a Reactive System: Modeling 644

T-Cell Activation With Statecharts. In: Proc. HCC 2001: Human-Centric Computing 645

Languages and Environments. IEEE Computer Society; 2001. p. 15–22. 646

60. Alur R, Courcoubetis C, Henzinger TA, Ho PH. Hybrid Automata: An Algorithmic 647

Approach to the Specification and Verification of Hybrid Systems. In: Hybrid Systems. 648

vol. 736 of LNCS. Springer; 1993. p. 209–229. 649

61. Bartocci E, Bortolussi L, Smolka SA. Hybrid Systems and Biology. Information and 650

Computation. 2014;236:1–2. 651

62. Fromentin J, Eveillard D, Roux O. Hybrid modeling of biological networks: mixing 652

temporal and qualitative biological properties. BMC Syst Biol. 2010;4:79. 653

63. Asarin E, Dang T, Girard A. Hybridization methods for the analysis of nonlinear 654

systems. Acta Informatica. 2007;43(7):451–476. 655

64. Dang T, Maler O, Testylier R. Accurate hybridization of nonlinear systems. In: Proc. of 656

HSCC 2010: the 13th ACM International Conference on Hybrid Systems: Computation 657

and Control. ACM; 2010. p. 11–20. 658

65. Dang T, Testylier R. Hybridization domain construction using curvature estimation. In: 659

Proc. of HSCC 2011: the 14th International Conference on Hybrid Systems: 660

computation and control. ACM; 2011. p. 123–132. 661

66. Grosu R, Batt G, Fenton F, Glimm J, Le Guernic C, Smolka SA, et al. From Cardiac 662

Cells to Genetic Regulatory Networks. In: Proc. of CAV 2011: the 14th International 663

Conference on Computer Aided Verification. vol. 6806 of LNCS. Springer Berlin / 664

Heidelberg; 2011. p. 396–411. 665

67. Ghosh R, Tomlin C. Lateral Inhibition through Delta-Notch Signaling: A Piecewise 666

Affine Hybrid Model. In: Proc. of HSCC 2001: the 4th International Workshop on 667

Hybrid Systems: Computation and Control. vol. 2034 of LNCS. Springer; 2001. p. 668

232–246. 669

68. Ghosh R, Tiwari A, Tomlin C. Automated Symbolic Reachability Analysis; with 670

Application to Delta-Notch Signaling Automata. In: Proc. of HSCC 2003: the 6th 671

International Workshop on Hybrid Systems: Computation and Control. vol. 2623 of 672

LNCS. Springer; 2003. p. 233–248. 673

69. Barnat J, Brim L, Cerná I, Drazan S, Fabriková J, Lánı́k J, et al. BioDiVinE: A 674

Framework for Parallel Analysis of Biological Models. In: Proc. of COMPMOD 2009: 675

the 2nd International Workshop on Computational Models for Cell Processes. vol. 6 of 676

EPTCS; 2009. p. 31–45. 677

70. Batt G, Belta C, Weiss R. Temporal Logic Analysis of Gene Networks under Parameter 678

Uncertainty. IEEE Trans of Automatic Control. 2008;53:215–229. 679

71. Batt G, Yordanov B, Weiss R, Belta C. Robustness analysis and tuning of synthetic gene 680

networks. Bioinformatics. 2007;23(18):2415–2422. 681

PLOS 18/24

72. Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH. Toward real-time 682

simulation of cardiac dynamics. In: Proc. of CMSB 2011: the 9th International 683

Conference on Computational Methods in Systems Biology. ACM; 2011. p. 103–112. 684

73. Bartocci E, Corradini F, Di Berardini MR, Entcheva E, Smolka SA, Grosu R. Modeling 685

and simulation of cardiac tissue using hybrid I/O automata. Theoretical Computer 686

Science. 2009;410(33-34):3149–3165. 687

74. Bartocci E, Corradini F, Entcheva E, Grosu R, Smolka S. CellExcite: an efficient 688

simulation environment for excitable cells. BMC Bioinformatics. 2008;9(Suppl 2):S3. 689

75. The MathWorks I. MATLAB; 2015. Natick, Massachusetts, United States. 690

76. The MathWorks I. Simulink;. Natick, Massachusetts, United States. 691

77. Chen T, Diciolla M, Kwiatkowska MZ, Mereacre A. A simulink hybrid heart model for 692

quantitative verification of cardiac pacemakers. In: Proc. of HSCC 2013: the 16th 693

International Conference on Hybrid Systems: Computation and Control. ACM; 2013. p. 694

131–136. 695

78. Brim L, Ceska M, Drazan S, Safránek D. Exploring Parameter Space of Stochastic 696

Biochemical Systems Using Quantitative Model Checking. In: Proc. of CAV 2013: the 697

25th International Conference on Computer Aided Verification 2013, Saint Petersburg, 698

Russia, July 13-19, 2013. Proceedings. vol. 8044 of LNCS. Springer; 2013. p. 107–123. 699

79. Barnat J, Brim L, Krejci A, Streck A, Safránek D, Vejnar M, et al. On Parameter 700

Synthesis by Parallel Model Checking. IEEE/ACM Trans Comput Biology Bioinform. 701

2012;9(3):693–705. 702

80. Donzé A. Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid 703

Systems. In: Proc. of CAV 2010: the 22nd International Conference on Computer 704

Aided Verification. vol. 6174 of LNCS. Springer Berlin; 2010. p. 167–170. 705

81. Mobilia N, Donzé A, Moulis JM, Fanchon E. A Model of the Cellular Iron Homeostasis 706

Network Using Semi-Formal Methods for Parameter Space Exploration. In: Proc. of 707

HSB 2012: First International Workshop on Hybrid Systems and Biology. vol. 92 of 708

EPTCS; 2012. p. 42–57. 709

82. Kong S, Gao S, Chen W, Clarke E. dReach: δ-Reachability Analysis for Hybrid 710

Systems. In: Proc. of TACAS 2015: the 21st International Conference on Tools and 711

Algorithms for the Construction and Analysis of Systems. vol. 9035. Springer Berlin 712

Heidelberg; 2015. p. 200–205. 713

83. Liu B, Kong S, Gao S, Zuliani P, Clarke EM. Parameter Synthesis for Cardiac Cell 714

Hybrid Models Using δ-Decisions. In: Proc. of CMSB 2014: the 12th International 715

Conference on Computational Methods in Systems Biology. vol. 8859 of LNCS; 2014. 716

p. 99–113. 717

84. Annapureddy YSR, Liu C, Fainekos GE, Sankaranarayanan S. S-TaLiRo: A Tool for 718

Temporal Logic Falsification for Hybrid Systems. In: Proc. of TACAS 2011: the 17th 719

International Conference on Tools and Algorithms for the Construction and Analysis of 720

Systems. vol. 6605 of LNCS. Springer; 2011. p. 254–257. 721

85. Murthy A, Bartocci E, Fenton FH, Glimm J, Gray R, Smolka SA, et al. Curvature 722

analysis of cardiac excitation wavefronts. In: Proceedings of the 9th International 723

Conference on Computational Methods in Systems Biology. CMSB ’11. New York, NY, 724

USA: ACM; 2011. p. 151–160. 725

PLOS 19/24

86. Gol EA, Bartocci E, Belta C. A formal methods approach to pattern synthesis in 726

reaction diffusion systems. In: Proc. of CDC 2014: the IEEE 53rd Annual Conference 727

on Decision and Control; 2014. p. 108–113. 728

87. Haghighi I, Jones A, Kong Z, Bartocci E, Grosu R, Belta C. SpaTeL: A Novel 729

Spatial-temporal Logic and Its Applications to Networked Systems. In: Proc. of HSCC 730

’15: the 18th International Conference on Hybrid Systems: Computation and Control. 731

ACM; 2015. p. 189–198. 732

88. Grosu R, Smolka SA, Corradini F, Wasilewska A, Entcheva E, Bartocci E. Learning and 733

detecting emergent behavior in networks of cardiac myocytes. Communications of the 734

ACM. 2009;52(3):97–105. 735

89. Bartocci E, Singh R, von Stein FB, Amedome A, Caceres AJJ, Castillo J, et al. 736

Teaching cardiac electrophysiology modeling to undergraduate students: laboratory 737

exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. 738

Advances in Physiology Education. 2011;35(4):427–437. 739

90. Paun G, Rozenberg G. A guide to membrane computing. Theoretical Computer Science. 740

2002;287(1):73 – 100. Natural Computing. 741

91. Regev A, Panina E, Silverman W, Cardelli L, Shapiro E. BioAmbients: an abstraction 742

for biological compartments. Theoretical Computer Science. 2004;325(1):141–167. 743

Computational Systems Biology. 744

92. Muganthan VA, Phillips A, Vigliotti MG. BAM: BioAmbient machine. In: Proc. of 745

ACSD 2008: the 8th International Conference on Application of Concurrency to System 746

Design. IEEE; 2008. p. 45–49. 747

93. Pilegaard H, Nielson F, Nielson HR. Pathway analysis for BioAmbients. J Log Algebr 748

Program. 2008;77(1-2):92–130. 749

94. Cardelli L. Brane Calculi. In: Proc. of CMSB 2004: the international Conference, 750

Computational Methods in Systems Biology. vol. 3082 of LNCS. Springer; 2004. p. 751

257–278. 752

95. Merelli E, Armano G, Cannata N, Corradini F, d’Inverno M, Doms A, et al. Agents in 753

bioinformatics, computational and systems biology. Briefings in Bioinformatics. 754

2007;8(1):45–59. 755

96. Bartocci E, Cacciagrano D, Cannata N, Corradini F, Merelli E, Milanesi L, et al. An 756

agent-based multilayer architecture for bioinformatics grids. NanoBioscience, IEEE 757

Transactions on. 2007;6(2):142–148. 758

97. Burkitt M, Walker DC, Romano DM, Fazeli A. Modelling sperm behaviour in a 3D 759

environment. In: Proc. of CMSB 2011: the 9th International Conference on 760

Computational Methods in Systems Biology; 2011. p. 141–149. 761

98. Paoletti N, Liò P, Merelli E, Viceconti M. Multilevel Computational Modeling and 762

Quantitative Analysis of Bone Remodeling. IEEE/ACM Trans Comput Biology 763

Bioinform. 2012;9(5):1366–1378. 764

99. Deutsch A, Dormann S. Cellular Automaton Modeling of Biological Pattern Formation: 765

Characterization, Applications, and Analysis. Genetic Programming and Evolvable 766

Machines. 2007 Mar;8(1):105–106. 767

100. Bethe HA. Statistical Theory of Superlattices. Proceedings of the Royal Society of 768

London Series A, Mathematical and Physical Sciences. 1935;150(871):552–575. 769

PLOS 20/24

101. Zaki MH, Tahar S, Bois G. Computing cancer software models of complex tissues and 770

disease are yielding a better understanding of cancer and suggesting potential treatments. 771

Nature. 2012;491:s62 – s63. 772

102. M Scianna LP, editor. Cellular Potts Models: Multiscale Developments and Biological 773

Applications. Chapman Hall/CRC Press; 2013. 774

103. Izaguirre JA, Chaturvedi R, Huang C, Cickovski TM, Coffland J, Thomas GL, et al. 775

COMPUCELL, a multi-model framework for simulation of morphogenesis. 776

Bioinformatics. 2004;20(7):1129–1137. 777

104. Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA. A Multi-cell, 778

Multi-scale Model of Vertebrate Segmentation and Somite Formation. PLoS 779

Computational Biology. 2011;7(10):e1002155. 780

105. Menichetti G, Remondini D, Bianconi G. Correlations between weights and overlap in 781

ensembles of weighted multiplex networks. Phys Rev E. 2014;90:062817. 782

106. Bartocci E, Corradini F, Merelli E, Tesei L. Detecting synchronisation of biological 783

oscillators by model checking. Theoretical Computer Science. 784

2010;411(20):1999–2018. 785

107. Bartocci E, Liò P, Merelli E, Paoletti N. Multiple Verification in Complex Biological 786

Systems: The Bone Remodelling Case Study. T Comp Sys Biology. 2012;14:53–76. 787

108. Calzone L, Fages F, Soliman S. BIOCHAM: an environment for modeling biological 788

systems and formalizing experimental knowledge. Bioinformatics. 789

2006;22(14):1805–1807. 790

109. Batt G, Bergamini D, de Jong H, Garavel H, Mateescu R. Model Checking Genetic 791

Regulatory Networks Using GNA and CADP. In: Proc. of SPIN 2004: the 11th 792

International SPIN Workshop on Model Checking Software. vol. 2989 of LNCS; 2004. 793

p. 158–163. 794

110. Rizk A, Batt G, Fages F, Soliman S. Continuous valuations of temporal logic 795

specifications with applications to parameter optimization and robustness measures. 796

Theoretical Computer Science. 2011;412(26):2827–2839. 797

111. Fainekos G, Pappas G. Robust Sampling for MITL Specifications. In: Proc. of 798

FORMATS 2007: the 5th International Conference on Formal Modeling and Analysis 799

of Timed Systems. vol. 4763 of LNCS. Springer; 2007. p. 147–162. 800

112. Rizk A, Batt G, Fages F, Soliman S. On a Continuous Degree of Satisfaction of 801

Temporal Logic Formulae with Applications to Systems Biology. In: Proceedings of the 802

6th International Conference on Computational Methods in Systems Biology. CMSB 803

’08. Berlin, Heidelberg: Springer-Verlag; 2008. p. 251–268. 804

113. Donzé A, Maler O. Robust Satisfaction of Temporal Logic over Real-Valued Signals. 805

In: Proc. of FORMATS 2010: the 8th International Conference on Formal Modeling 806

and Analysis of Timed Systems. vol. 6246 of LNCS. Springer; 2010. p. 92–106. 807

114. Donzé A, Clermont G, Langmead CJ. Parameter Synthesis in Nonlinear Dynamical 808

Systems: Application to Systems Biology. Journal of Computational Biology. 809

2010;17(3):325–336. 810

115. Donzé A, Fanchon E, Gattepaille LM, Maler O, Tracqui P. Robustness analysis and 811

behavior discrimination in enzymatic reaction networks. PLoS One. 2011;6(9):e24246. 812

PLOS 21/24

116. Bartocci E, Bortolussi L, Nenzi L, Sanguinetti G. System design of stochastic models 813

using robustness of temporal properties. Theor Comput Sci. 2015;587:3–25. 814

117. Nielson F, Nielson HR, Priami C, Rosa D. Static Analysis for Systems Biology. In: 815

Proc. of the Winter International Synposium on Information and Communication 816

Technologies. WISICT ’04. Trinity College Dublin; 2004. p. 1–6. 817

118. Danos V, Feret J, Fontana W, Krivine J. Abstract interpretation of cellular signalling 818

networks. In: Proc. of VMCAI ’2008: the Ninth International Conference on 819

Verification, Model Checking and Abstract Interpretation. vol. 4905 of LNCS. Springer, 820

Berlin, Germany; 2008. p. 83–97. 821

119. Feret J. Reachability Analysis of Biological Signalling Pathways by Abstract 822

Interpretation. In: Proc. of ICCMSE ’2007: the International Conference of 823

Computational Methods in Sciences and Engineering. No. 963.(2) in American Institute 824

of Physics Conference Proceedings. American Institute of Physics; 2007. p. 619–622. 825

120. Pnueli A. The temporal logic of programs. Foundations of Computer Science, IEEE 826

Annual Symposium on. 1977;0:46–57. 827

121. Clarke EM, Emerson E. Design and synthesis of synchronization skeletons using 828

branching time temporal logic. In: Proc. of Logics of Programs, Workshop. vol. 131 of 829

LNCS. Springer Berlin; 1982. p. 52–71. 830

122. Hansson H, Jonsson B. A Logic for Reasoning about Time and Reliability. Formal Asp 831

Comput. 1994;6(5):512–535. 832

123. Aziz A, Sanwal K, Singhal V, Brayton R. Model-checking continuous-time Markov 833

chains. ACM Trans Comput Logic. 2000 Jul;1(1):162–170. 834

124. Batt G, Belta C, Weiss R. Model Checking Liveness Properties of Genetic Regulatory 835

Networks. In: Proc. of TACAS 2007: the 13th International Conference on Tools and 836

Algorithms for the Construction and Analysis of Systems. vol. 5016 of LNCS. 837

Springer-Verlag; 2007. p. 323–338. 838

125. Cook B, Fisher J, Krepska E, Piterman N. Proving Stabilization of Biological Systems. 839

In: Proc. of VMCAI 2011: the 12th International Conference on Verification, Model 840

Checking, and Abstract Interpretation. vol. 6538 of LNCS. Springer; 2011. p. 134–149. 841

126. Clarke EM, Emerson EA, Sistla AP. Automatic Verification of Finite-state Concurrent 842

Systems Using Temporal Logic Specifications. ACM Trans Program Lang Syst. 843

1986;8(2):244–263. 844

127. Emerson EA, Halpern JY. ”Sometimes” and ”Not Never” Revisited: On Branching 845

Versus Linear Time Temporal Logic. J ACM. 1986;33(1):151–178. 846

128. Alur R, Henzinger TA. Real-time Logics: Complexity and Expressiveness. In: LICS; 847

1990. p. 390–401. 848

129. Alur R, Henzinger TA. A Really Temporal Logic. J ACM. 1994;41(1):181–204. 849

130. Alur R, Feder T, Henzinger TA. The Benefits of Relaxing Punctuality. J ACM. 850

1996;43(1):116–146. 851

131. Maler O, Nickovic D. Monitoring Temporal Properties of Continuous Signals. In: Proc. 852

of FORMATS/FTRTFT 2004: joint International Conferences on Formal Modeling and 853

Analysis of Timed Systmes and Formal Techniques in Real-Time and Fault-Tolerant 854

Systems. vol. 3253 of LNCS; 2004. p. 152–166. 855

PLOS 22/24

132. Donzé A, Maler O, Bartocci E, Nickovic D, Grosu R, Smolka SA. On Temporal Logic 856

and Signal Processing. In: Automated Technology for Verification and Analysis. 857

Lecture Notes in Computer Science. Springer Berlin / Heidelberg; 2012. p. To Appear. 858

133. Bartocci E, Bortolussi L, Sanguinetti S. Data-driven Statistical Learning of Temporal 859

Logic Properties. In: Proc. of FORMATS 2014: the 12th International Conference on 860

Formal Modeling and Analysis of Timed Systems. vol. 8711 of LNCS; 2014. p. 23–37. 861

134. Bufo S, Bartocci E, Sanguinetti G, Borelli M, Lucangelo U, Bortolussi L. Temporal 862

Logic Based Monitoring of Assisted Ventilation in Intensive Care Patients. In: Proc. of 863

ISoLA 2014: the 6th International Symposium on Leveraging Applications of Formal 864

Methods, Verification and Validation. Part II. vol. 8803 of Lecture Notes in Computer 865

Science. Springer; 2014. p. 391–403. 866

135. Bartocci E, Bortolussi L, Nenzi L. A Temporal Logic Approach to Modular Design of 867

Synthetic Biological Circuits. In: Computational Methods in Systems Biology. vol. 868

8130 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2013. p. 869

164–177. 870

136. Kripke S. Semantical Considerations on Modal Logic. Acta Philosophica Fennica. 871

1963;16:83–94. 872

137. Cimatti A, Clarke EM, Giunchiglia F, Roveri M. NuSMV: A New Symbolic Model 873

Checker. STTT. 2000;2(4):410–425. 874

138. Nusser-Stein S, Beyer A, Rimann I, Adamczyk M, Piterman N, Hajnal A, et al. 875

Cell-cycle regulation of NOTCH signaling during C. elegans vulval development. Mol 876

Syst Biol. 2012;8:618. 877

139. Garavel H, Lang F, Mateescu R, Serwe W. CADP 2010: A Toolbox for the Construction 878

and Analysis of Distributed Processes. In: Proc. of TACAS 2011: the 17th International 879

Conference on Tools and Algorithms for the Construction and Analysis of Systems. vol. 880

6605. Springer; 2011. p. 372–387. 881

140. Bryant RE. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans 882

Computers. 1986;35(8):677–691. 883

141. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ. Symbolic Model Checking: 884

10ˆ20 States and Beyond. Inf Comput. 1992;98(2):142–170. 885

142. Ahmad J, Bourdon J, Eveillard D, Fromentin J, Roux O, Sinoquet C. Temporal 886

constraints of a gene regulatory network: Refining a qualitative simulation. Biosystems. 887

2009;98(3):149–159. 888

143. Calder M, Vyshemirsky V, Gilbert D, Orton RJ. Analysis of Signalling Pathways Using 889

Continuous Time Markov Chains. T Comp Sys Biology. 2006;4220:44–67. 890

144. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O. Probabilistic model 891

checking of complex biological pathways. Theoretical Computer Science. 892

2008;319(3):239–257. 893

145. Jha SK, Clarke EM, Langmead CJ, Legay A, Platzer A, Zuliani P. A Bayesian 894

Approach to Model Checking Biological Systems. In: Proc. of CMSB 2009: the 7th 895

International Conference on Computational Methods in Systems Biology. vol. 5688 of 896

Lecture Notes in Computer Science. Springer; 2009. p. 218–234. 897

146. Zuliani P, Baier C, Clarke EM. Rare-event verification for stochastic hybrid systems. In: 898

HSCC. ACM; 2012. p. 217–226. 899

PLOS 23/24

147. Antoniotti M, Policriti A, Ugel N, Mishra B. Model building and model checking for 900

biochemical processes. Cell Biochemistry and Biophysics. 2003;38:271–286. 901

10.1385/CBB:38:3:271. 902

148. Calzone L, Chabrier-Rivier N, Fages F, Soliman S. Machine learning biochemical 903

networks from temporal logic properties. Transactions on Computational Systems 904

Biology VI. 2006;p. 68–94. 905

149. Sankaranarayanan S, Fainekos G. Simulating Insulin Infusion Pump Risks by In-Silico 906

Modeling of the Insulin-Glucose Regulatory System. In: Proc. of CMSB 2012: the 10th 907

Conference on Computational Methods in Systems Biology. vol. 7605 of LNCS; 2012. 908

p. 322–341. 909

150. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of 910

programs by construction or approximation of fixpoints. In: Proc. of POPL ’77: the 4th 911

ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM; 912

1977. p. 238–252. 913

151. Paulev L, Magnin M, Roux O. Static analysis of Biological Regulatory Networks 914

dynamics using abstract interpretation. Math Struct in Comp Science. 2012;22:651–685. 915

152. Fages F, Soliman S. Abstract interpretation and types for systems biology. Theor 916

Comput Sci. 2008;403(1):52–70. 917

153. Nenzi L, Bartocci E, Bortolussi L, Milios D, Sanguinetti G. Studying Emergent 918

Behaviours in Morphogenesis using Signal Spatio-Temporal Logic. In: Proc. of HSB 919

2015: the 4th International Workshop on Hybrid Systems Biology. vol. 9271 of LNCS. 920

Springer; 2015. . 921

154. Bartocci E, Gao S, Smolka SA. Proc. of ISoLA 2014: the 6th International Symposium 922

on Leveraging Applications of Formal Methods, Verification and Validation. Part II. In: 923

Medical Cyber-Physical Systems - (Track Introduction). vol. 8803 of Lecture Notes in 924

Computer Science. Springer; 2014. p. 353–355. 925

PLOS 24/24

